SGER: Statistical Analysis of Multi-Model Ensembles of Climate Experiments

SGER:气候实验多模式集合的统计分析

基本信息

项目摘要

The PI is one of a small team of scientists from North America and Europe who will work collaboratively to establish a baseline for regional climate prediction over the continental U.S. and Canada using regional climate models nested within atmospheric data fields derived from reanalyses (the National Centers for Environmental Prediction-Department of Energy Reanalysis 2 and the European Center for Medium Range Weather Forecasting reanalysis). He will work within an innovative regional climate change project called North American Regional Climate Change Assessment Program (NARCCAP). The U.S. NARCCAP objective is to develop a framework within the regional climate modeling community that advances substantially the responsiveness of U.S. regional climate research to national priorities. The significance of NARCCAP is that it will advance the status of regional climate modeling in the US in support of understanding the basic science of regional climate and will provide state-of-the-art information on regional climate for impacts studies. The specific goals of NARCCAP are to explore the combined uncertainty in climate change scenarios that results from using multiple atmosphere-ocean general circulation models to provide boundary conditions for multiple regional climate models (RCMs), and ultimately to provide regionally resolved data sets suitable for examining the impacts of climate change. A critical first step toward these goals is to establish a baseline of RCM accuracy by evaluating the participating RCMs when driven by reanalysis (loosely, "observed") boundary conditions. The PI's role is to develop a general statistical framework for synthesizing model output to obtain estimates of climate change and examine sources of variation attributable to the RCM, the Atmosphere-Ocean Global Circulation Model (AOGCM), and the downscaling from the AOGCM to the RCM. The PI will provide a testbed for the development of analysis methodology to support the larger-scale NARCCAP experiments and to focus the more extensive scientific planning for NARCCAP based on the statistical analysis of model results. Broader Impacts: The need for regional modeling to assess climate impacts is recognized in the U.S. Climate Change Science Program Strategic Plan (CCSP, 2003), http://www.climatescience.gov/Library/stratplan2003/vision/development.htm ,and was emphasized even more strongly in the NRC review of the CCSP plan. This project will help the nation meet this need.
PI是来自北美和欧洲的科学家小组之一,他们将合作建立美国大陆和加拿大区域气候预测的基线,使用区域气候模型嵌套在来自再分析的大气数据场中(国家环境预测中心-能源部再分析2和欧洲中期天气预报中心)。 他将在一个名为北美区域气候变化评估计划(NARCCAP)的创新区域气候变化项目中工作。 美国NARCCAP的目标是在区域气候建模社区内建立一个框架,大大提高美国区域气候研究对国家优先事项的响应能力。NARCCAP的意义在于它将提升美国区域气候模拟的地位,支持对区域气候基础科学的理解,并将为影响研究提供最先进的区域气候信息。 NARCCAP的具体目标是探索气候变化情景中的综合不确定性,这些不确定性是由于使用多个大气-海洋环流模式为多个区域气候模式提供边界条件而产生的,并最终提供适合于研究气候变化影响的区域分解数据集。 实现这些目标的关键第一步是建立一个基线的RCM精度通过评估参与的RCM时,再分析(松散的,“观察”)的边界条件驱动。 PI的作用是开发一个综合模式输出的一般统计框架,以获得气候变化的估计值,并研究可归因于RCM、大气-海洋全球环流模式(AOGCM)和从AOGCM到RCM的降尺度的变化来源。PI将为分析方法的开发提供一个试验平台,以支持更大规模的NARCCAP实验,并根据模型结果的统计分析,重点关注NARCCAP更广泛的科学规划。更广泛的影响:美国气候变化科学计划战略计划(CCSP,2003)(www.example.com)认识到需要建立区域模型来评估气候影响http://www.climatescience.gov/Library/stratplan2003/vision/development.htm,NRC对CCSP计划的审查更加强调了这一点。 该项目将帮助国家满足这一需求。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephan Sain其他文献

Computational and Graphical
计算和图形
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Douglas Nychka;Soutir Bandyopadhyay Assistant Professor b;D. Hammerling;F. Lindgren;Stephan Sain Scientist;Stephan Sain
  • 通讯作者:
    Stephan Sain

Stephan Sain的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephan Sain', 18)}}的其他基金

Collaborative Research: CMG-- Models, Tools and Analysis for Studies of the Magnetosphere and Upper Atmosphere
合作研究:CMG——磁层和高层大气研究的模型、工具和分析
  • 批准号:
    0934488
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Multi-resolution lattice models and theory for spatial process estimators
空间过程估计器的多分辨率点阵模型和理论
  • 批准号:
    0707069
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: The North American Regional Climate Change Assessment Program (NARCCAP)--Using Multiple GCMs and RCMs to Simulate Future Climates and Their Uncertainty
合作研究:北美区域气候变化评估计划(NARCCAP)——使用多个 GCM 和 RCM 模拟未来气候及其不确定性
  • 批准号:
    0534173
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: CMG: Gridded Analyses of Large Multi-Scale Climate Data Sets with Ensemble Representation of Uncertainty
合作研究:CMG:使用不确定性集合表示的大型多尺度气候数据集的网格分析
  • 批准号:
    0417971
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
  • 批准号:
    2339353
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Developing statistical methods for structural change analysis using panel data
使用面板数据开发结构变化分析的统计方法
  • 批准号:
    24K16343
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Deepening and Expanding Research for Efficient Methods of Function Estimation in High Dimensional Statistical Analysis
高维统计分析中高效函数估计方法的深化和拓展研究
  • 批准号:
    23H03353
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Statistical Inferences under Monotonic Hazard Trend in Survival Analysis
生存分析中单调危险趋势下的统计推断
  • 批准号:
    2311292
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
EAGER: SSMCDAT2023: Revealing Local Symmetry Breaking in Intermetallics: Combining Statistical Mechanics and Machine Learning in PDF Analysis
EAGER:SSMCDAT2023:揭示金属间化合物中的局部对称性破缺:在 PDF 分析中结合统计力学和机器学习
  • 批准号:
    2334261
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
REU Site: University of North Carolina at Greensboro - Complex Data Analysis using Statistical and Machine Learning Tools
REU 站点:北卡罗来纳大学格林斯伯勒分校 - 使用统计和机器学习工具进行复杂数据分析
  • 批准号:
    2244160
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Statistical Methods for Whole-Brain Dynamic Connectivity Analysis
全脑动态连接分析的统计方法
  • 批准号:
    10594266
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Statistical methods for co-expression network analysis of population-scale scRNA-seq data
群体规模 scRNA-seq 数据共表达网络分析的统计方法
  • 批准号:
    10740240
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
DATA ANALYTICS, STATISTICAL AND BIOINFORMATIC ANALYSIS AND TOOL DEVELOPMENT, Genome wide association studies (GWAS)
数据分析、统计和生物信息分析及工具开发、全基因组关联研究 (GWAS)
  • 批准号:
    10976182
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Statistical analysis of Japanese texts with application of analysis technique used in high energy physics
应用高能物理分析技术对日语文本进行统计分析
  • 批准号:
    23K17512
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了