Collaborative Research: CMG: Gridded Analyses of Large Multi-Scale Climate Data Sets with Ensemble Representation of Uncertainty
合作研究:CMG:使用不确定性集合表示的大型多尺度气候数据集的网格分析
基本信息
- 批准号:0417971
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-15 至 2009-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding past climate variability and predicting future climate changes requires long records of observed climate fields. However, observations from the past are typically noisy and irregularly sampled in time and space, with large spatial gaps. Improved representations of the uncertainty in analyzed fields would be extremely useful in climatological research. To help meet this need, this project will pursue research into a systematic and robust method of producing an analyzed field from gappy climate data. The approach to be taken is to attempt to fuse two computationally efficient approaches that address variability at different scales. The first of the two methods was developed in climate research and uses a low-rank approximation to the system error covariance matrix. The method reconstructs mainly large-scale features of a climate field and hence misses most of small-scale variability. The second approach stems from Bayesian estimation in geostatistics that combines the strength of a globally estimated covariance with nonstationary local estimates; it represents the uncertainty not only due to the observational noise and sampling deficiencies, but also uncertainty due to unknown covariance relationships. The methods have been developed independently and their coupling for a practical climatological application or representing uncertainty in a historical analysis by ensemble has yet to be accomplished. To make this approach work for realistic climate problems requires the theoretical research proposedIf successful, the result of the project will the development of an efficient numerical algorithm suitable for very large, disparate, irregularly spaced climatological data sets that a) reconstructs variability on different scales, b) produces an average analysis field over a regular spatio-temporal grid and, c) yields a method to produce a collection of equally likely analysis fields (an ensemble) which reflects the uncertainty in the average analysis field. The method will then be applied to data sets of marine and land climate important to current climatological research. The results will also provide a better technique for creating the initial conditions for climate simulation ensembles, permitting better estimation of uncertainty in predictions of climate variation. Software implementing the new approach and the climate data sets derived from it will be made publicly available.
了解过去的气候变化和预测未来的气候变化需要长期记录观测到的气候场。然而,过去的观测结果通常是嘈杂的,在时间和空间上采样不规律,具有很大的空间差距。改进对分析领域中不确定性的表示将在气候学研究中非常有用。为了帮助满足这一需求,该项目将继续研究一种系统和可靠的方法,从令人惊讶的气候数据中产生分析场。要采取的方法是尝试融合两种计算效率高的方法,以解决不同尺度上的可变性问题。这两种方法中的第一种是在气候研究中开发的,并使用系统误差协方差矩阵的低阶近似。该方法主要重建气候场的大尺度特征,因此忽略了大部分小尺度变异性。第二种方法源于地质统计学中的贝叶斯估计,它结合了全局估计协方差的强度和非平稳局部估计的强度;它不仅表示由于观测噪声和采样缺陷而产生的不确定性,而且还表示由于未知协方差关系而产生的不确定性。这些方法是独立开发的,它们在实际气候学应用中的耦合或在由系综进行的历史分析中表示不确定性的工作尚未完成。为了使这一办法适用于现实的气候问题,需要拟议的理论研究,如果成功,该项目的结果将开发出一种适用于非常大的、不同的、不规则间隔的气候数据集的有效数值算法,即a)重建不同尺度上的可变性,b)在规则的时空网格上产生平均分析场,以及c)产生一种方法来产生一组同等可能的分析场(集合),以反映平均分析场中的不确定性。然后,该方法将被应用于对当前气候学研究至关重要的海洋和陆地气候的数据集。这些结果还将为气候模拟组合创造初始条件提供更好的技术,允许更好地估计气候变化预测中的不确定性。实施新方法的软件和由此得出的气候数据集将公开提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephan Sain其他文献
Computational and Graphical
计算和图形
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Douglas Nychka;Soutir Bandyopadhyay Assistant Professor b;D. Hammerling;F. Lindgren;Stephan Sain Scientist;Stephan Sain - 通讯作者:
Stephan Sain
Stephan Sain的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephan Sain', 18)}}的其他基金
Collaborative Research: CMG-- Models, Tools and Analysis for Studies of the Magnetosphere and Upper Atmosphere
合作研究:CMG——磁层和高层大气研究的模型、工具和分析
- 批准号:
0934488 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Multi-resolution lattice models and theory for spatial process estimators
空间过程估计器的多分辨率点阵模型和理论
- 批准号:
0707069 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: The North American Regional Climate Change Assessment Program (NARCCAP)--Using Multiple GCMs and RCMs to Simulate Future Climates and Their Uncertainty
合作研究:北美区域气候变化评估计划(NARCCAP)——使用多个 GCM 和 RCM 模拟未来气候及其不确定性
- 批准号:
0534173 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Continuing Grant
SGER: Statistical Analysis of Multi-Model Ensembles of Climate Experiments
SGER:气候实验多模式集合的统计分析
- 批准号:
0502977 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
CMG Collaborative Research: Tempered Stable Models for Preasymptotic Pollutant Transport in Natural Media
CMG 合作研究:自然介质中渐进前污染物传输的稳定模型
- 批准号:
1460319 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CMG--Analysis and Modeling of Rotating Stratified Flows
合作研究:CMG--旋转层流分析与建模
- 批准号:
1025166 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
CMG Collaborative Research: Tempered Stable Models for Preasymptotic Pollutant Transport in Natural Media
CMG 合作研究:自然介质中渐进前污染物传输的稳定模型
- 批准号:
1025417 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
CMG COLLABORATIVE RESEARCH: Quantum Monte Carlo Calculations of Deep Earth Materials
CMG 合作研究:地球深部材料的量子蒙特卡罗计算
- 批准号:
1024936 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
CMG Collaborative Research: Non-assimilation Fusion of Data and Models
CMG协同研究:数据与模型的非同化融合
- 批准号:
1025453 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
CMG Collaborative Research: Probabilistic Stratigraphic Alignment and Dating of Paleoclimate Data
CMG 合作研究:概率地层排列和古气候数据测年
- 批准号:
1025438 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Continuing Grant
CMG COLLABORATIVE RESEARCH: Novel Mathematical Strategies for Superparameterization in Atmospheric and Oceanic Flows
CMG 合作研究:大气和海洋流超参数化的新数学策略
- 批准号:
1025468 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
CMG Collaborative Research: Simulation of Wave-Current Interaction Using Novel, Coupled Non-Phase and Phase Resolving Wave and Current Models
CMG 合作研究:使用新型耦合非相位和相位解析波流模型模拟波流相互作用
- 批准号:
1025527 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CMG--Analysis and Modeling of Rotating Stratified Flows
合作研究:CMG--旋转层流分析与建模
- 批准号:
1025188 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
CMG COLLABORATIVE RESEARCH: Nonlinear elastic-wave inverse scattering and tomography- from cracks to mantle convection
CMG 合作研究:非线性弹性波逆散射和断层扫描 - 从裂缝到地幔对流
- 批准号:
1025302 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Continuing Grant