Kinetic Techniques for Hyperbolic and Multiscale Problems

双曲线和多尺度问题的动力学技术

基本信息

  • 批准号:
    0503964
  • 负责人:
  • 金额:
    $ 11.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-15 至 2006-02-28
  • 项目状态:
    已结题

项目摘要

In recent years there has seen a very fruitful exchange between ideas in the theory of kinetic equations and the theory of weak solutions for hyperbolic systems. At the core of this exchange lies the issue of deriving continuum theories from microscopic models of kinetic theory of gases or statistical physics. In this context transport properties play a crucial role whether in a framework of kinetic equations, or in a context of nonlinear transport as it appears with differential constraints in the context of polyconvex elastodynamics or nonlinear models for Maxwell?s equations. This proposal has the objectives to perform analytical and modeling work on the topics: (i) transport and oscillations in systems of two conservation laws, (ii) collisional kinetic models and their hydrodynamic limits, (iii) effect of differential constraints on the equations of polyconvex elastodynamics, (iv) mathematical aspects of kinetic theory of dilute polymers, and (v) development of kinetic techniques for homogenization problems. Hyperbolic systems of conservation laws express the basic laws of continuum physics and as such are central in modeling in the sciences. Kinetic modeling is becoming all the more pronounced, as microscopic modeling and the associated derivation of mesoscopic equations is commonplace in today?s engineering applications. Understanding of homogenization issues and the couplings in problems where multiple scales interact are necessary ingredients for the design of e cient computational algorithms that proceed without resolving all microscopic information of the problem. The mathematical analysis of issues related to the passage from small to coarser scales has significant implications on the design of high-performance computing algorithms, particularly when treating problems where scale interactions occur. Such problems are at the center of modern material science with several applications in chemical and materials engineering.
近年来,动力学方程理论和双曲系统弱解理论之间的思想交流非常富有成效。这次交流的核心是从气体动力学理论或统计物理学的微观模型中推导出连续介质理论的问题。在这种情况下,无论是在动力学方程的框架中,还是在非线性输运的背景下,输运性质都起着至关重要的作用,因为它在多凸弹性动力学或麦克斯韦方程的非线性模型的背景下出现微分约束。该提案的目标是对以下主题进行分析和建模工作:(i)两个守恒定律系统中的输运和振荡,(ii)碰撞动力学模型及其流体动力学极限,(iii)微分约束对多凸弹性动力学方程的影响,(iv)稀聚合物动力学理论的数学方面,以及(v)动力学技术的开发 同质化问题。守恒定律的双曲系统表达了连续介质物理的基本定律,因此是科学建模的核心。随着微观建模和介观方程的相关推导在当今的工程应用中变得司空见惯,动力学建模变得越来越明显。了解同质化问题和多尺度相互作用问题中的耦合是设计有效计算算法的必要成分,该算法无需解决问题的所有微观信息即可进行。对从小尺度到粗尺度过渡相关问题的数学分析对高性能计算算法的设计具有重要意义,特别是在处理发生尺度相互作用的问题时。这些问题是现代材料科学的核心,在化学和材料工程中有多种应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Athanasios Tzavaras其他文献

Athanasios Tzavaras的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Athanasios Tzavaras', 18)}}的其他基金

Kinetic Techniques for Hyperbolic and Multiscale Problems
双曲线和多尺度问题的动力学技术
  • 批准号:
    0555272
  • 财政年份:
    2005
  • 资助金额:
    $ 11.57万
  • 项目类别:
    Standard Grant
Hyperbolic and Kinetic Partial Differential Equations
双曲和动力学偏微分方程
  • 批准号:
    0205032
  • 财政年份:
    2002
  • 资助金额:
    $ 11.57万
  • 项目类别:
    Continuing Grant
Viscosity and Relaxation Approximations of Hyperbolic Systems
双曲系统的粘度和松弛近似
  • 批准号:
    9971934
  • 财政年份:
    1999
  • 资助金额:
    $ 11.57万
  • 项目类别:
    Standard Grant
Mathematical Sciences: "Nonlinear Dynamics in Continuum Mechanics."
数学科学:“连续介质力学中的非线性动力学”。
  • 批准号:
    9505342
  • 财政年份:
    1995
  • 资助金额:
    $ 11.57万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Dynamics in Continuum Mechanics
数学科学:连续介质力学中的非线性动力学
  • 批准号:
    9209049
  • 财政年份:
    1992
  • 资助金额:
    $ 11.57万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Systems of Evolution Equations in Thermomechanical Processes
数学科学:热机械过程中的演化方程组
  • 批准号:
    8716132
  • 财政年份:
    1987
  • 资助金额:
    $ 11.57万
  • 项目类别:
    Continuing Grant

相似国自然基金

EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金

相似海外基金

Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    $ 11.57万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 11.57万
  • 项目类别:
    Standard Grant
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
  • 批准号:
    2340042
  • 财政年份:
    2024
  • 资助金额:
    $ 11.57万
  • 项目类别:
    Continuing Grant
Creating a reflective, assessment workbook for University teachers to enhance teaching techniques and improve student engagement, by incorporating International Baccalaureate (IB) teaching practices
通过纳入国际文凭 (IB) 教学实践,为大学教师创建反思性评估工作簿,以提高教学技巧并提高学生参与度
  • 批准号:
    24K06129
  • 财政年份:
    2024
  • 资助金额:
    $ 11.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing Advanced Cryptanalysis Techniques for Symmetric-key Primitives with Real-world Public-key Applications
使用现实世界的公钥应用开发对称密钥原语的高级密码分析技术
  • 批准号:
    24K20733
  • 财政年份:
    2024
  • 资助金额:
    $ 11.57万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of new molecular self-temperature sensing techniques using luminescence-absorption hybrid thermometry
利用发光-吸收混合测温法开发新型分子自温度传感技术
  • 批准号:
    24K17691
  • 财政年份:
    2024
  • 资助金额:
    $ 11.57万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Novel techniques of percutaneous sonography-guided surgical operations (SonoSurgery
经皮超声引导外科手术新技术(SonoSurgery
  • 批准号:
    10087309
  • 财政年份:
    2024
  • 资助金额:
    $ 11.57万
  • 项目类别:
    Collaborative R&D
ConSenT: Connected Sensing Techniques: Cooperative Radar Networks Using Joint Radar and Communication Waveforms
ConSenT:互联传感技术:使用联合雷达和通信波形的协作雷达网络
  • 批准号:
    EP/Y035933/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.57万
  • 项目类别:
    Fellowship
ERI: SDR Beyond Radio: Enabling Experimental Research in Multi-Node Optical Wireless Networks via Software Defined Radio Tools and Techniques
ERI:超越无线电的 SDR:通过软件定义无线电工具和技术实现多节点光无线网络的实验研究
  • 批准号:
    2347514
  • 财政年份:
    2024
  • 资助金额:
    $ 11.57万
  • 项目类别:
    Standard Grant
CRII: SHF: Embedding techniques for mechanized reasoning about existing programs
CRII:SHF:现有程序机械化推理的嵌入技术
  • 批准号:
    2348490
  • 财政年份:
    2024
  • 资助金额:
    $ 11.57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了