Viscosity and Relaxation Approximations of Hyperbolic Systems
双曲系统的粘度和松弛近似
基本信息
- 批准号:9971934
- 负责人:
- 金额:$ 8.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 2002-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research is concerned with several aspects of the theory of weak solutions for hyperbolic systems, with the objective to developtechniques for understanding the emergence of shock waves from smooth approximate solutions in the small viscosity and small relaxation-time limits. Such questions are intimately tied to the mechanical issue of the passage from one thermomechanical theory to another, and appear in models of continuum physics, kinetic theory, and in the interface of the two. The goal is on the one hand to exploit ideas from the kinetic theory of gases in developing theory for hyperbolic systems, on the other hand in applying recent advances from the theory of hyperbolic equations in studying the passage from microscopic theories (of interacting particles) to mesoscopic theories (at the kinetic level) to macroscopic (continuum) theories. Shock waves are coherent structures that appear in situations involving high speed supersonic flows. Their mathematical modeling involves nonlinear hyperbolic partial differential equations. Understanding the theory of these equations is very important in the design and implementation of numerical algorithms for computing. The emphasis of this proposal is in situations involving shock waves in transitions from rarefied to dense gases. A typical application is air flow in high altitude supersonic flight,for example during reentry of a space shuttle into the atmosphere.
本研究关注双曲型方程组弱解理论的几个方面,目的是发展理解在小粘性和小松弛时间限制下从光滑近似解中出现激波的技术。 这些问题与从一个热力学理论过渡到另一个热力学理论的力学问题密切相关,并出现在连续介质物理学、动力学理论的模型中,以及两者的界面上。目标是一方面利用气体动力学理论的思想发展双曲系统的理论,另一方面应用双曲方程理论的最新进展研究从微观理论(相互作用粒子)到介观理论(在动力学水平)到宏观(连续)理论的通道。激波是相干结构,出现在涉及高速超音速流的情况下。其数学模型涉及非线性双曲型偏微分方程。理解这些方程的理论对于设计和实现数值计算算法是非常重要的。 这个建议的重点是在涉及从稀薄到稠密气体过渡的激波的情况下。 一个典型的应用是高空超音速飞行中的空气流动,例如在航天飞机重返大气层期间。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Athanasios Tzavaras其他文献
Athanasios Tzavaras的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Athanasios Tzavaras', 18)}}的其他基金
Kinetic Techniques for Hyperbolic and Multiscale Problems
双曲线和多尺度问题的动力学技术
- 批准号:
0503964 - 财政年份:2005
- 资助金额:
$ 8.9万 - 项目类别:
Standard Grant
Kinetic Techniques for Hyperbolic and Multiscale Problems
双曲线和多尺度问题的动力学技术
- 批准号:
0555272 - 财政年份:2005
- 资助金额:
$ 8.9万 - 项目类别:
Standard Grant
Hyperbolic and Kinetic Partial Differential Equations
双曲和动力学偏微分方程
- 批准号:
0205032 - 财政年份:2002
- 资助金额:
$ 8.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: "Nonlinear Dynamics in Continuum Mechanics."
数学科学:“连续介质力学中的非线性动力学”。
- 批准号:
9505342 - 财政年份:1995
- 资助金额:
$ 8.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Dynamics in Continuum Mechanics
数学科学:连续介质力学中的非线性动力学
- 批准号:
9209049 - 财政年份:1992
- 资助金额:
$ 8.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Systems of Evolution Equations in Thermomechanical Processes
数学科学:热机械过程中的演化方程组
- 批准号:
8716132 - 财政年份:1987
- 资助金额:
$ 8.9万 - 项目类别:
Continuing Grant
相似海外基金
CEDAR: Modeling of Initial Temperature Relaxation and Expansion of Meteor Trails
CEDAR:流星轨迹初始温度弛豫和扩展的建模
- 批准号:
2329677 - 财政年份:2024
- 资助金额:
$ 8.9万 - 项目类别:
Standard Grant
Molecular Radiative and Relaxation Processes
分子辐射和弛豫过程
- 批准号:
2246379 - 财政年份:2023
- 资助金额:
$ 8.9万 - 项目类别:
Continuing Grant
Point-of Care MR Device to Estimate T1 Relaxation Time as a Biomarker of Liver Disease (resubmission)
用于估计 T1 弛豫时间作为肝病生物标志物的护理点 MR 设备(重新提交)
- 批准号:
10760778 - 财政年份:2023
- 资助金额:
$ 8.9万 - 项目类别:
CAREER: Mapping and Manipulating Lattice Relaxation in Moire Superlattices of Group VI Transition Metal Dichalcogenides
职业:绘制和操纵第六族过渡金属二硫化物莫尔超晶格中的晶格弛豫
- 批准号:
2238196 - 财政年份:2023
- 资助金额:
$ 8.9万 - 项目类别:
Continuing Grant
Hydrogels with Tunable Stress Relaxation and Mobility for Enhancing Articular Cartilage Regeneration
具有可调应力松弛和活动能力的水凝胶可增强关节软骨再生
- 批准号:
10750831 - 财政年份:2023
- 资助金额:
$ 8.9万 - 项目类别:
Elucidation of Physiological Relaxation Effects of Viewing Natural Landscape Images using Virtual Reality
阐明使用虚拟现实观看自然景观图像的生理放松效果
- 批准号:
23K02005 - 财政年份:2023
- 资助金额:
$ 8.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Local structure relaxation and non-equilibrium phase transition in dynamic facilitation of self-propelled complex molecular systems
自驱动复杂分子系统动态促进中的局部结构弛豫和非平衡相变
- 批准号:
23K03246 - 财政年份:2023
- 资助金额:
$ 8.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exact master equation for a discrete quantum system and the relaxation process
离散量子系统的精确主方程和弛豫过程
- 批准号:
23K03268 - 财政年份:2023
- 资助金额:
$ 8.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advanced functionality of metallic glasses with inhomogeneous local structures by gradient and asymmetric multidimensional control of relaxation states
通过弛豫状态的梯度和不对称多维控制实现具有不均匀局部结构的金属玻璃的高级功能
- 批准号:
23H00228 - 财政年份:2023
- 资助金额:
$ 8.9万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Structure formation and energy relaxation by counter fast electron flow and background plasma
通过反快速电子流和背景等离子体形成结构和能量弛豫
- 批准号:
23H01150 - 财政年份:2023
- 资助金额:
$ 8.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)