Hyperbolic and Kinetic Partial Differential Equations
双曲和动力学偏微分方程
基本信息
- 批准号:0205032
- 负责人:
- 金额:$ 14.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-01 至 2006-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NSF Award Abstract - DMS-0205032Mathematical Sciences: Hyperbolic and kinetic partial differential equationsAbstract0205032 TzavarasThis project deals with several aspects of the theory of weak solutions for hyperbolic systems, and the mathematical theory of transport equations that arise in kinetic theory of gases.Specific themes are:(i) To exploit the interface between the theory of weak solutions for hyperbolic systems and the theory of transport equations in the kinetic theory of gases, particularly with regard to issues of propagation and cancellation of oscillations. (ii) To study well-posedness and hydrodynamic limits for certain collisional kinetic models, problems that are intimately connected to the thermomechanical issues arising in the passage from microscopic to continuum theories. (iii) To exploit variational techniques in the study of the structural properties for the equations of multi-dimensional elastodynamics and viscoelasticity. (iv) To analyze various instances of diffusion-sensitive dynamics, like the effect of small-viscosity on the long-time evolution of hyperbolic systems and the notion of graph solutions for diffusion sensitive systems.The mathematical research on hyperbolic systems of conservation laws is to a large extent motivated by the fundamental conservation laws in physics and continuum mechanics. From its early stages, analytical and numerical methods in this field have developed together, and analytical understanding contributes in the design of high performance computational algorithms. In recent years there has seen a very fruitful exchange between ideas in the theory of kinetic equations and the theory of weak solutions for hyperbolic systems. At the core of this exchange is the issue of deriving continuum theories from microscopic models of kinetic theory of gases or statistical physics. This project will make use of this exchange of ideas to develop mathematical techniques to better understand the wide variety of important physical systems that are modeled by conservation laws.
NSF 奖项摘要 - DMS-0205032 数学科学:双曲和动力学偏微分方程摘要 0205032 Tzavaras 该项目涉及双曲系统弱解理论的几个方面,以及气体动力学理论中出现的输运方程的数学理论。具体主题是:(i) 探索双曲系统弱解理论之间的接口 双曲系统和气体动力学理论中的输运方程理论,特别是关于振荡的传播和抵消问题。 (ii) 研究某些碰撞动力学模型的适定性和流体动力学极限,这些问题与从微观到连续介质理论的过程中出现的热机械问题密切相关。 (iii) 利用变分技术研究多维弹性动力学和粘弹性方程的结构特性。 (iv) 分析扩散敏感动力学的各种实例,例如小粘度对双曲系统长期演化的影响以及扩散敏感系统图解的概念。守恒定律双曲系统的数学研究在很大程度上受到物理学和连续介质力学中基本守恒定律的推动。 从早期阶段开始,该领域的分析方法和数值方法就共同发展,分析理解有助于高性能计算算法的设计。 近年来,动力学方程理论和双曲系统弱解理论之间的思想交流非常富有成效。 这次交流的核心是从气体动力学理论或统计物理学的微观模型中推导出连续介质理论的问题。该项目将利用这种思想交流来开发数学技术,以更好地理解由守恒定律建模的各种重要物理系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Athanasios Tzavaras其他文献
Athanasios Tzavaras的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Athanasios Tzavaras', 18)}}的其他基金
Kinetic Techniques for Hyperbolic and Multiscale Problems
双曲线和多尺度问题的动力学技术
- 批准号:
0503964 - 财政年份:2005
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
Kinetic Techniques for Hyperbolic and Multiscale Problems
双曲线和多尺度问题的动力学技术
- 批准号:
0555272 - 财政年份:2005
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
Viscosity and Relaxation Approximations of Hyperbolic Systems
双曲系统的粘度和松弛近似
- 批准号:
9971934 - 财政年份:1999
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
Mathematical Sciences: "Nonlinear Dynamics in Continuum Mechanics."
数学科学:“连续介质力学中的非线性动力学”。
- 批准号:
9505342 - 财政年份:1995
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Dynamics in Continuum Mechanics
数学科学:连续介质力学中的非线性动力学
- 批准号:
9209049 - 财政年份:1992
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
Mathematical Sciences: Systems of Evolution Equations in Thermomechanical Processes
数学科学:热机械过程中的演化方程组
- 批准号:
8716132 - 财政年份:1987
- 资助金额:
$ 14.4万 - 项目类别:
Continuing Grant
相似国自然基金
关于Kinetic Cucker-Smale模型及相关耦合模型的适定性研究
- 批准号:12001530
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
带奇性的 Kinetic Cucker-Smale 模型在随机环境中的平均场极限及时间渐近行为研究
- 批准号:11801194
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Kinetic Monte Carlo 模拟薄膜生长机理的研究
- 批准号:10574059
- 批准年份:2005
- 资助金额:12.0 万元
- 项目类别:面上项目
相似海外基金
Interplay Between Data and Partial Differential Equation Models Through the Lens of Kinetic Equations
通过动力学方程的视角观察数据和偏微分方程模型之间的相互作用
- 批准号:
2308440 - 财政年份:2023
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
Partial Differential Equation Methods in Kinetic Theory and Their Applications
运动理论中的偏微分方程方法及其应用
- 批准号:
2106650 - 财政年份:2021
- 资助金额:
$ 14.4万 - 项目类别:
Continuing Grant
Analysis of Nonlinear Partial Differential Equations in Free Boundary Fluid Dynamics, Mathematical Biology, and Kinetic Theory
自由边界流体动力学、数学生物学和运动理论中的非线性偏微分方程分析
- 批准号:
2055271 - 财政年份:2021
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
Adaptive High Order Low-Rank Tensor Methods for High-Dimensional Partial Differential Equations with Application to Kinetic Simulations
高维偏微分方程的自适应高阶低阶张量方法及其在动力学模拟中的应用
- 批准号:
2111383 - 财政年份:2021
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
CAREER: Nonlocal partial differential equations in collisional kinetic theory
职业:碰撞动力学理论中的非局部偏微分方程
- 批准号:
2019335 - 财政年份:2019
- 资助金额:
$ 14.4万 - 项目类别:
Continuing Grant
Analysis of Non-Linear Partial Differential Equations in Free Boundary Fluid Dynamics and Kinetic Theory
自由边界流体动力学和运动理论中非线性偏微分方程的分析
- 批准号:
1764177 - 财政年份:2018
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
Partial Differential Equation Methods in Kinetic Theory and Their Applications
运动理论中的偏微分方程方法及其应用
- 批准号:
1810868 - 财政年份:2018
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
Partial differential equation methods in kinetic theory and their applications
动力学理论中的偏微分方程方法及其应用
- 批准号:
1611695 - 财政年份:2016
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
CAREER: Nonlocal partial differential equations in collisional kinetic theory
职业:碰撞动力学理论中的非局部偏微分方程
- 批准号:
1554761 - 财政年份:2016
- 资助金额:
$ 14.4万 - 项目类别:
Continuing Grant
Optimal transport, geometry, kinetic and partial differential equations
最优输运、几何、动力学和偏微分方程
- 批准号:
327297-2011 - 财政年份:2015
- 资助金额:
$ 14.4万 - 项目类别:
Discovery Grants Program - Individual