Compressible phasefield models for phase transition
相变的可压缩相场模型
基本信息
- 批准号:170469018
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2010
- 资助国家:德国
- 起止时间:2009-12-31 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
During the first period of this research project we have mainly considered the Navier-Stokes Korteweg system as a mathematical model for two-phase flows with phase transition. An algorithm for the numerical treatment of this system has been developed in 2D and 3D and the jump condition across the interface for the sharp interface limit has been studied. Due to the limitation of the computational costs it turned out that the realistic diameter of the computational domain has to be very (unrealistic) small. Therefore in the new period we will consider a phase field model which should be able to overcome this problem. In the literature it has been done already for the case of constant densities in the bulks of the two phases that are given by a smooth interpolation of these two values next to the interface. The interpolation is designed in such a way that the thermodynamic properties are satisfied. In the new period we would like to derive a thermodynamically consistent model in which the densities in the bulks of the two phases are compressible. Subsequently the corresponding numerical code will be developed. This code should also be able – if necessary after some modifications – to solve also the phase field problem which is developed in the project of Dreyer/Kraus. Furthermore we will study the jump condition across the interface for the sharp interface limit in the fully dynamical case for the phase field model. This project is closely related to A3 (Dreyer/Kraus). The main differences are the following: Additionally in A3 the classical Navier-Stokes Korteweg model together with temperature and the nonlocal versions of the problems will be considered. The approach to develop the phase field model in A2 and A3 will be different, which will lead to different equations for the phase field. In particular in A2 the interpolation between the bulk densities will be done for 1 , not for p. Therefore we expect that the governing system will be different in A2 and A3 and that the study of the sharp interface limit concerns different systems which can hopefully be treated with similar methods. Furthermore in A2 we will develop a numerical code for the corresponding phase field approaches in A2 and A3.
在本研究计划的第一阶段,我们主要考虑Navier-Stokes-Korteweg系统作为有相变的两相流的数学模型。在二维和三维的数值处理算法已经开发了这个系统和跳跃条件的界面上的尖锐的界面限制进行了研究。由于计算成本的限制,事实证明,计算域的实际直径必须非常小(不切实际)。因此,在新的时期,我们将考虑相场模型,这应该能够克服这个问题。在文献中,对于两相体积密度恒定的情况已经做过了,这两个值在界面附近的平滑插值给出。插值设计的方式,满足热力学性质。在新时期,我们希望得到一个两相体积密度可压缩的热力学相容模型。随后将开发相应的数字代码。这段代码也应该能够-如果必要的一些修改后-以解决也相领域的问题,这是发展中国家的项目德雷尔/克劳斯。此外,我们将研究在完全动态的情况下,相场模型的尖锐的界面极限跨越界面的跳跃条件。该项目与A3(Dreyer/Kraus)密切相关。主要区别如下:此外,在A3中,将考虑经典的Navier-Stokes Korteweg模型以及温度和非局部问题。在A2和A3中开发相场模型的方法将是不同的,这将导致用于相场的不同方程。特别是在A2中,堆积密度之间的插值将针对1而不是针对p进行。因此,我们预计A2和A3中的控制系统将是不同的,并且尖锐界面极限的研究涉及不同的系统,这些系统有望用类似的方法处理。此外,在A2中,我们将为A2和A3中相应的相场方法开发一个数值代码。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Dietmar Kröner其他文献
Professor Dr. Dietmar Kröner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Dietmar Kröner', 18)}}的其他基金
Numerical Solution of the Navier-Stokes-Korteweg System
Navier-Stokes-Korteweg 系统的数值解
- 批准号:
5442191 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Research Units
Minimal Orbits and Hamilton-Jacobi Equations
最小轨道和 Hamilton-Jacobi 方程
- 批准号:
5363196 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Research Units
Phase transitions in thermoelasticity and compressible fluids
热弹性和可压缩流体中的相变
- 批准号:
5363366 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Research Units
Entwicklung, Implementation und Validierung eines Finite-Volumen-Verfahrens zur numerischen Lösung der Gleichungen der Magnetohydrodynamik in drei Raumdimensionen unter besonderer Berücksichtigung des Strahlungstransportes
开发、实施和验证有限体积方法,用于三个空间维度磁流体动力学方程的数值求解,特别考虑辐射传输
- 批准号:
5382063 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
Multiscale thermo-mechanical fracture analysis of polycrystalline silicon shells in photovoltaic modules by a combined phasefield – continuum damage approach.
采用相场连续损伤相结合的方法对光伏组件中的多晶硅壳进行多尺度热机械断裂分析。
- 批准号:
400853899 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Phasefield simulation of the microscopic solidification structure and phase distribution (A08)
微观凝固结构和相分布的相场模拟(A08)
- 批准号:
200381778 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Collaborative Research Centres
Development of Multiscale Computational Fracture Mechanics by Using Cohesive Zone Model and Phasefield Method
利用内聚区模型和相场方法发展多尺度计算断裂力学
- 批准号:
19360044 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)