Coalescent processes and population models
聚结过程和群体模型
基本信息
- 批准号:0504882
- 负责人:
- 金额:$ 9.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI studies several problems related to coalescentprocesses and population models. Coalescent processesare stochastic processes that model a system of particleswhich start out separated and merge into clusters as timegoes forward. These processes can be used to describethe genealogy of a population because if one takes asample from a population and follows the ancestral linesbackwards in time, the ancestral lines will coalesce.When a beneficial mutation occurs in a population andspreads rapidly, many ancestral lines will merge atalmost the same time, as they will all be traced back tothe individual that had the beneficial mutation. Onegoal is to use results from the theory of coalescentprocesses with multiple mergers to get further insightinto tests that are used to detect beneficial mutations.A second project is to determine the distribution of thetime that it takes for one individual in a population toexperience k mutations. The PI will also study a modelof coalescence in which the total mass of the systemincreases over time. A coalescent model in which newparticles appear at rate one and clusters merge at a rateproportional to the product of the masses has previouslybeen studied, but a qualitatively different phasetransition is conjectured to arise in an alternativemodel in which clusters merge at a rate proportional tothe sum of the masses.Stochastic models of coalescence have a wide range ofapplications in other fields of science such as biology,physical chemistry, and astronomy. Biologists interestedin understanding evolution are concerned with the mergingof the ancestral lines of a sample from a population. Itshould be possible to use the mathematical theory ofcoalescence to gain further insight into how beneficialmutations impact this process. The project of determiningthe amount of time for one individual in a population toexperience several mutations is motivated by simple modelsof cancer, in which it is assumed that a cell becomescancerous only after several harmful mutations take place.The study of coalescent processes in which the mass of thesystem increases over time is motivated by recent interestin randomly growing networks.
PI研究了与聚结过程和种群模型有关的几个问题。 聚结过程是一种随机过程,它模拟了一个粒子系统,这些粒子开始分离,随着时间的推移合并成簇。 这些过程可以用来描述一个种群的系谱,因为如果从一个种群中提取样本并沿着祖先线追溯过去,那么祖先线就会合并。当一个有益的突变在种群中发生并迅速传播时,许多祖先线几乎会同时合并,因为它们都可以追溯到发生有益突变的那个个体。 一个目标是利用多重合并的合并过程理论的结果,进一步深入了解用于检测有益突变的测试。第二个项目是确定群体中一个个体经历k个突变所需的时间分布。 PI还将研究一种聚结模型,其中系统的总质量随着时间的推移而增加。 一个新粒子以1的速率出现,而团簇以与质量乘积成正比的速率合并的聚结模型以前曾被研究过,但在另一个团簇以与质量之和成正比的速率合并的替代模型中,一个质上不同的相变被证明会出现。聚结的随机模型在其他科学领域,如生物学、物理化学、和天文学。 对理解进化感兴趣的生物学家关注的是从种群中抽取样本的祖先谱系的融合。 它应该有可能使用数学理论的聚结,以获得进一步的洞察力,以了解如何突变影响这一进程。 确定群体中一个个体经历几次突变所需时间的项目是由简单的癌症模型激发的,在该模型中,假设细胞只有在发生几次有害突变后才发生癌变。对细胞质量随时间增加的结合过程的研究是由最近对随机增长网络的兴趣激发的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Schweinsberg其他文献
Dynamics of the evolving Bolthausen-Sznitman coalecent
Bolthausen-Sznitman 聚结体演化的动力学
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Jason Schweinsberg - 通讯作者:
Jason Schweinsberg
The Accumulation of Beneficial Mutations and Convergence to a Poisson Process
有益突变的积累和泊松过程的收敛
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Nantawat Udomchatpitak;Jason Schweinsberg - 通讯作者:
Jason Schweinsberg
An O(n2) bound for the relaxation time of a Markov chain on cladograms
分支图上马尔可夫链弛豫时间的 O(n2) 界限
- DOI:
10.1002/rsa.1029 - 发表时间:
2002 - 期刊:
- 影响因子:1
- 作者:
Jason Schweinsberg - 通讯作者:
Jason Schweinsberg
Loop-Erased Random Walk on Finite Graphs and the Rayleigh Process
有限图上的循环擦除随机游走和瑞利过程
- DOI:
10.1007/s10959-007-0125-7 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Jason Schweinsberg - 通讯作者:
Jason Schweinsberg
E↵ect of Graph Structures on Selection for a Model of a Population on an Undirected Graph
图结构对无向图上总体模型选择的影响
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Jason Schweinsberg - 通讯作者:
Jason Schweinsberg
Jason Schweinsberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Schweinsberg', 18)}}的其他基金
Probabilistic Models of Evolving Populations
人口演变的概率模型
- 批准号:
1707953 - 财政年份:2017
- 资助金额:
$ 9.96万 - 项目类别:
Standard Grant
Conference on Combinatorial Stochastic Processes
组合随机过程会议
- 批准号:
1346283 - 财政年份:2014
- 资助金额:
$ 9.96万 - 项目类别:
Standard Grant
Seminar on Stochastic processes 2014
2014年随机过程研讨会
- 批准号:
1344274 - 财政年份:2013
- 资助金额:
$ 9.96万 - 项目类别:
Standard Grant
Branching Brownian motion and population models
分支布朗运动和群体模型
- 批准号:
1206195 - 财政年份:2012
- 资助金额:
$ 9.96万 - 项目类别:
Standard Grant
Coalescent Processes and Population Models
聚结过程和群体模型
- 批准号:
0805472 - 财政年份:2008
- 资助金额:
$ 9.96万 - 项目类别:
Standard Grant
Processes of Coalescence and Fragmentation
合并和分裂的过程
- 批准号:
0102022 - 财政年份:2001
- 资助金额:
$ 9.96万 - 项目类别:
Fellowship Award
相似国自然基金
Submesoscale Processes Associated with Oceanic Eddies
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
相似海外基金
Characterizing Pareto fronts: Trade-offs in the yeast growth cycle constrain adaptation
表征帕累托前沿:酵母生长周期的权衡限制了适应
- 批准号:
10749856 - 财政年份:2024
- 资助金额:
$ 9.96万 - 项目类别:
Regulation of Vascular Calcification by Adventitial Endothelial Cells
外膜内皮细胞对血管钙化的调节
- 批准号:
10642619 - 财政年份:2023
- 资助金额:
$ 9.96万 - 项目类别:
Exploration of the immunosuppressive function of RBMS3/PRRX1 axis in TNBC
RBMS3/PRRX1轴在TNBC中免疫抑制功能的探讨
- 批准号:
10650595 - 财政年份:2023
- 资助金额:
$ 9.96万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 9.96万 - 项目类别:
Housing policy, neighborhood context, and pathways to midlife mortality in a social experiment
社会实验中的住房政策、社区环境和中年死亡率的途径
- 批准号:
10868129 - 财政年份:2023
- 资助金额:
$ 9.96万 - 项目类别:
Role of Creatine Metabolism in Necrotizing Enterocolitis
肌酸代谢在坏死性小肠结肠炎中的作用
- 批准号:
10724729 - 财政年份:2023
- 资助金额:
$ 9.96万 - 项目类别:
Towards treatment for the complex patient: investigations of low-intensity focused ultrasound.
针对复杂患者的治疗:低强度聚焦超声的研究。
- 批准号:
10775216 - 财政年份:2023
- 资助金额:
$ 9.96万 - 项目类别:
Identification of blood biomarkers predictive of organ aging
鉴定预测器官衰老的血液生物标志物
- 批准号:
10777065 - 财政年份:2023
- 资助金额:
$ 9.96万 - 项目类别:
Impacts of Acute Ambient Air Pollution Exposure on Women's Reproductive Health: Identifying Mechanisms and Susceptible Reproductive Processes Across the Menstrual Cycle and Early Pregnancy
急性环境空气污染暴露对女性生殖健康的影响:确定月经周期和怀孕早期的机制和易受影响的生殖过程
- 批准号:
10645818 - 财政年份:2023
- 资助金额:
$ 9.96万 - 项目类别:
Hippocampal interactions with striatal subnetworks for reward prediction and evaluation
海马与纹状体子网络的相互作用用于奖励预测和评估
- 批准号:
10659974 - 财政年份:2023
- 资助金额:
$ 9.96万 - 项目类别: