Coalescent Processes and Population Models
聚结过程和群体模型
基本信息
- 批准号:0805472
- 负责人:
- 金额:$ 13.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI studies several problems related to coalescent processes and population models. Coalescent processes are stochastic processes that model a system of particles which start out separated and merge into clusters as time goes forward. These processes can be used to describe the genealogy of a population because if one takes a sample from a population and follows the ancestral lines backwards in time, the ancestral lines will coalesce.One goal is to gain more insight into the effect that natural selection has on this process. The mathematical aspects of this question are related to branching Brownian motion, the FKPP equation, and the theory of spin glasses. The PI also studies problems in coalescent theory that come from population genetics, related to how increasing population sizes or large family sizes affect the coalescent process, and therefore the patterns of mutations that are likely to be observed in a sample from the population. A third project is to determine the distribution of the time that it takes for one individual in a population to experience a specified number of mutations.Stochastic models of coalescence have a wide range of applications in other fields of science such as biology, physical chemistry, and astronomy. Biologists interested in understanding evolution are concerned with the merging of the ancestral lines of a sample from a population. It should be possible to use the mathematical theory of coalescence to gain further insight into how large family sizes, increasing population sizes, and natural selection impact this process. An additional project involves determining the amount of time that it takes for one individual in a population to experience several mutations.This project is motivated by models of cancer in which it is assumed that a cell becomes cancerous only after several harmful mutations take place.
PI研究了与聚结过程和种群模型有关的几个问题。凝聚过程是一种随机过程,它模拟了一个粒子系统,随着时间的推移,粒子系统开始分离并合并成簇。这些过程可以用来描述一个群体的家谱,因为如果从一个群体中取一个样本,沿着祖先的谱系向后追溯,那么祖先的谱系就会融合在一起。其中一个目标是更深入地了解自然选择对这一过程的影响。这个问题的数学方面与分支布朗运动、FKPP方程和自旋玻璃理论有关。PI还研究来自群体遗传学的聚结理论中的问题,涉及到群体规模或大家庭规模的增加如何影响聚结过程,以及可能在群体样本中观察到的突变模式。第三个项目是确定种群中一个个体经历特定数量的突变所需的时间分布。聚并的随机模型在生物学、物理化学和天文学等其他科学领域有着广泛的应用。对理解进化感兴趣的生物学家关注的是一个种群中一个样本的祖先谱系的合并。应该有可能利用融合的数学理论来进一步了解大家庭规模、不断增长的人口规模和自然选择是如何影响这一过程的。另一个项目包括确定种群中一个个体经历几个突变所需的时间。这个项目的动机是癌症模型,假设一个细胞只有在几个有害的突变发生后才会癌变。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Schweinsberg其他文献
Dynamics of the evolving Bolthausen-Sznitman coalecent
Bolthausen-Sznitman 聚结体演化的动力学
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Jason Schweinsberg - 通讯作者:
Jason Schweinsberg
The Accumulation of Beneficial Mutations and Convergence to a Poisson Process
有益突变的积累和泊松过程的收敛
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Nantawat Udomchatpitak;Jason Schweinsberg - 通讯作者:
Jason Schweinsberg
An O(n2) bound for the relaxation time of a Markov chain on cladograms
分支图上马尔可夫链弛豫时间的 O(n2) 界限
- DOI:
10.1002/rsa.1029 - 发表时间:
2002 - 期刊:
- 影响因子:1
- 作者:
Jason Schweinsberg - 通讯作者:
Jason Schweinsberg
Loop-Erased Random Walk on Finite Graphs and the Rayleigh Process
有限图上的循环擦除随机游走和瑞利过程
- DOI:
10.1007/s10959-007-0125-7 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Jason Schweinsberg - 通讯作者:
Jason Schweinsberg
E↵ect of Graph Structures on Selection for a Model of a Population on an Undirected Graph
图结构对无向图上总体模型选择的影响
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Jason Schweinsberg - 通讯作者:
Jason Schweinsberg
Jason Schweinsberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Schweinsberg', 18)}}的其他基金
Probabilistic Models of Evolving Populations
人口演变的概率模型
- 批准号:
1707953 - 财政年份:2017
- 资助金额:
$ 13.18万 - 项目类别:
Standard Grant
Conference on Combinatorial Stochastic Processes
组合随机过程会议
- 批准号:
1346283 - 财政年份:2014
- 资助金额:
$ 13.18万 - 项目类别:
Standard Grant
Seminar on Stochastic processes 2014
2014年随机过程研讨会
- 批准号:
1344274 - 财政年份:2013
- 资助金额:
$ 13.18万 - 项目类别:
Standard Grant
Branching Brownian motion and population models
分支布朗运动和群体模型
- 批准号:
1206195 - 财政年份:2012
- 资助金额:
$ 13.18万 - 项目类别:
Standard Grant
Coalescent processes and population models
聚结过程和群体模型
- 批准号:
0504882 - 财政年份:2005
- 资助金额:
$ 13.18万 - 项目类别:
Continuing Grant
Processes of Coalescence and Fragmentation
合并和分裂的过程
- 批准号:
0102022 - 财政年份:2001
- 资助金额:
$ 13.18万 - 项目类别:
Fellowship Award
相似国自然基金
Submesoscale Processes Associated with Oceanic Eddies
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
相似海外基金
NSFDEB-NERC: Integrating computational, phenotypic, and population-genomic approaches to reveal processes of cryptic speciation and gene flow in Madag
NSFDEB-NERC:整合计算、表型和群体基因组方法来揭示马达格神秘物种形成和基因流的过程
- 批准号:
NE/X002071/1 - 财政年份:2023
- 资助金额:
$ 13.18万 - 项目类别:
Research Grant
Bird migration strategies: linking individual decisions and population processes
鸟类迁徙策略:将个体决策与种群过程联系起来
- 批准号:
RGPIN-2019-05513 - 财政年份:2022
- 资助金额:
$ 13.18万 - 项目类别:
Discovery Grants Program - Individual
Stochastic population processes: metastability, asymptotics and phase transitions
随机总体过程:亚稳态、渐近和相变
- 批准号:
RGPIN-2018-04480 - 财政年份:2022
- 资助金额:
$ 13.18万 - 项目类别:
Discovery Grants Program - Individual
NSFDEB-NERC: Integrating Computational, Phenotypic, and Population-Genomic Approaches to Reveal Processes of Cryptic Speciation and Gene Flow in Madagascars Mouse Lemurs
NSFDEB-NERC:整合计算、表型和群体基因组方法来揭示马达加斯加小鼠狐猴的隐秘物种形成和基因流过程
- 批准号:
2148914 - 财政年份:2022
- 资助金额:
$ 13.18万 - 项目类别:
Standard Grant
Mapping heterotrophic functions to microbial population structures in wastewater resource recovery processes for optimization and prediction of antimicrobial resistance dissemination.
将异养功能映射到废水资源回收过程中的微生物种群结构,以优化和预测抗菌药物耐药性传播。
- 批准号:
RGPIN-2022-04203 - 财政年份:2022
- 资助金额:
$ 13.18万 - 项目类别:
Discovery Grants Program - Individual
Stochastic population processes: metastability, asymptotics and phase transitions
随机总体过程:亚稳态、渐近和相变
- 批准号:
RGPIN-2018-04480 - 财政年份:2021
- 资助金额:
$ 13.18万 - 项目类别:
Discovery Grants Program - Individual
Bird migration strategies: linking individual decisions and population processes
鸟类迁徙策略:将个体决策与种群过程联系起来
- 批准号:
RGPIN-2019-05513 - 财政年份:2021
- 资助金额:
$ 13.18万 - 项目类别:
Discovery Grants Program - Individual
Computational methods for population-size-dependent branching processes
群体大小相关的分支过程的计算方法
- 批准号:
DP200101281 - 财政年份:2020
- 资助金额:
$ 13.18万 - 项目类别:
Discovery Projects
Stochastic population processes: metastability, asymptotics and phase transitions
随机总体过程:亚稳态、渐近和相变
- 批准号:
RGPIN-2018-04480 - 财政年份:2020
- 资助金额:
$ 13.18万 - 项目类别:
Discovery Grants Program - Individual
Elucidation of adaptive and neutral evolution processes in Fagus crenata using population genomics
使用群体基因组学阐明水青冈的适应性和中性进化过程
- 批准号:
20H03027 - 财政年份:2020
- 资助金额:
$ 13.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




