Distances in Robust Model Selection

鲁棒模型选择中的距离

基本信息

  • 批准号:
    0504957
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2009-06-30
  • 项目状态:
    已结题

项目摘要

Clean data is prerequisite for most statistical analyses. An ideal solution, when questionable data items arise, is to go back to check the source. However, in many cases this is not possible. Contamination therefore is an important problem, and robust techniques that can handle large data sets are needed to cope with this problem. The role of distances in the problem of robust model selection is examined. It is argued that robust model assessment and selection is an important problem that has not received adequate attention in the literature. It is suggested that distances offer potentially valuable tools for addressing various aspects of the problem of modeling, one of which is the aspect of robustness. A new framework is proposed that differs from the classical robustness paradigm in at least two aspects. Most of the developments in classical robustness center around location-scale models and the concepts therefrom. Attempts to extend classical robust procedures to other non location-scale models were met with limited success. The methodology proposed here incorporates easily a wide variety of models, including location-scale models. The starting point of the new proposal is the identification of a goodness-of-fit measure that provides an assessment of whether a given model approximates the mechanism that generated the data. It is then examined in what sense the measure is robust. Distances have been used extensively in many scientific fields such as genetics, physics, sociology, anthropology and more recently in the field of machine learning. The significance of this work is two-fold. Within the scientific field of statistics, a very general framework, that can address the problem of robust model assessment and selection is offered, that can handle large data sets and allows to measure the extend to which the model approximates the phenomenon under study. Outside the field of statistics the technology and scientific results can be extended and applied to address important problems in clinical informatics and bioequivalence.
干净的数据是大多数统计分析的先决条件。当出现可疑数据项时,一个理想的解决方案是返回检查源。然而,在许多情况下,这是不可能的。因此,污染是一个重要的问题,并且需要能够处理大数据集的鲁棒技术来科普这个问题。研究了距离在鲁棒模型选择问题中的作用。有人认为,鲁棒模型的评估和选择是一个重要的问题,在文献中没有得到足够的重视。有人建议,距离提供了潜在的有价值的工具,用于解决建模问题的各个方面,其中之一是鲁棒性方面。提出了一个新的框架,不同于经典的鲁棒性范式在至少两个方面。经典鲁棒性的大部分发展都围绕着位置-尺度模型及其概念。试图将经典的稳健程序扩展到其他非位置-尺度模型,但成功有限。这里提出的方法很容易结合了各种各样的模型,包括位置规模模型。新提案的出发点是确定一个拟合优度衡量标准,以评估给定模型是否接近产生数据的机制。然后检查在什么意义上该措施是稳健的。 距离在许多科学领域中得到了广泛的应用,如遗传学、物理学、社会学、人类学,最近还被用于机器学习领域。这项工作的意义是双重的。在统计学的科学领域内,提供了一个非常通用的框架,可以解决稳健模型评估和选择的问题,可以处理大型数据集,并允许测量模型近似研究中现象的程度。在统计学领域之外,技术和科学成果可以扩展并应用于解决临床信息学和生物等效性方面的重要问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marianthi Markatou其他文献

Patient-centered HCV care via telemedicine for individuals on medication for opioid use disorder: Telemedicine for Evaluation, Adherence and Medication for Hepatitis C (TEAM-C)
  • DOI:
    10.1016/j.cct.2021.106632
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew H. Talal;Marianthi Markatou;Elisavet M. Sofikitou;Lawrence S. Brown;Ponni Perumalswami;Amreen Dinani;Jonathan N. Tobin
  • 通讯作者:
    Jonathan N. Tobin
WED-479 Improved social outcomes after integrated hepatitis C and opioid use disorder treatment
  • DOI:
    10.1016/s0168-8278(24)01945-7
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew Talal;Raktim Mukhopadhyay;Valentina Veronesi;Arpan Dharia;Giovanni Saraceno;Marianthi Markatou
  • 通讯作者:
    Marianthi Markatou
Uniform integrability of the OLS estimators, and the convergence of their moments
  • DOI:
    10.1007/s11749-016-0498-y
  • 发表时间:
    2016-07-05
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Georgios Afendras;Marianthi Markatou
  • 通讯作者:
    Marianthi Markatou
W107 - Healthcare Access through Facilitated Telemedicine for Underserved Populations: A Stepped Wedge Cluster Randomized Controlled Trial of Hepatitis C Virus Treatment among Persons with Opioid Use Disorder
W107 - 通过促进远程医疗为服务不足人群提供医疗保健获取途径:阿片类药物使用障碍患者丙型肝炎病毒治疗的逐步楔形集群随机对照试验
  • DOI:
    10.1016/j.drugalcdep.2024.112049
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Andrew Talal;Marianthi Markatou;Anran Liub;Ponni Perumalswamic;Amreen Dinanic;Jonathan Tobin;Lawrence Brown
  • 通讯作者:
    Lawrence Brown
MDDC: An R and Python package for adverse event identification in pharmacovigilance data
MDDC:用于药物警戒数据中不良事件识别的 R 和 Python 包
  • DOI:
    10.1038/s41598-025-00635-w
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Anran Liu;Raktim Mukhopadhyay;Marianthi Markatou
  • 通讯作者:
    Marianthi Markatou

Marianthi Markatou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marianthi Markatou', 18)}}的其他基金

Problems in Model Selection, Mixtures and Weighted Likelihood
模型选择、混合和加权似然中的问题
  • 批准号:
    0072319
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
POWRE: Exploratory research in the interface of robustness/mixtures
POWRE:鲁棒性/混合物界面的探索性研究
  • 批准号:
    9973569
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Bounded Influence, High Efficiency, High Breakdown Estimation and Testing Procedures
数学科学:有限影响、高效率、高故障估计和测试程序
  • 批准号:
    9008846
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
  • 批准号:
    60085001
  • 批准年份:
    2000
  • 资助金额:
    14.0 万元
  • 项目类别:
    专项基金项目
ROBUST语音识别方法的研究
  • 批准号:
    69075008
  • 批准年份:
    1990
  • 资助金额:
    3.5 万元
  • 项目类别:
    面上项目
改进型ROBUST序贯检测技术
  • 批准号:
    68671030
  • 批准年份:
    1986
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

Research on Robust Multi-Person Gait Recognition Based on the Combination of Human Mesh Model and Silhouette
基于人体网格模型与剪影相结合的鲁棒多人步态识别研究
  • 批准号:
    24K20794
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
  • 批准号:
    2337375
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: New data integration approaches for efficient and robust meta-estimation, model fusion and transfer learning
职业:新的数据集成方法,用于高效、稳健的元估计、模型融合和迁移学习
  • 批准号:
    2337943
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311596
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311598
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Robust and Efficient Model-based Reinforcement Learning
稳健高效的基于模型的强化学习
  • 批准号:
    EP/X03917X/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Mechanistically understanding biomineralisation and ancient ocean chemistry changes to facilitate robust climate model validation
从机械角度理解生物矿化和古代海洋化学变化,以促进稳健的气候模型验证
  • 批准号:
    EP/Y034252/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311597
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Advancing Theory and Practice of Robust Simulation Analysis Under Input Model Risk
职业:推进输入模型风险下稳健仿真分析的理论和实践
  • 批准号:
    2246281
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Distance-based robust inferences and model selection for semiparametric models
半参数模型的基于距离的鲁棒推理和模型选择
  • 批准号:
    RGPIN-2018-04328
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了