Large-Scale Phenomena in Models of Statistical Mechanics

统计力学模型中的大规模现象

基本信息

  • 批准号:
    0505356
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

The aim of this proposal is to investigate a class of problems on the borderline between probability and mathematical physics. Altogether ten specific projects are proposed which can be grouped into four categories. The first category deals with problems of first-order phase transitions. Here the specific objects of study include proofs of phase transitions by comparison to mean-field theory, influence of dilution on symmetry breaking in antiferromagnets, and various effects accompanying phase transitions in systems with continuous spins. The second category is focused on droplet and interface phenomena. The corresponding projects include a study of relaxation to equilibrium in solvent-solute systems and the mesoscopic concept of pressure in systems at phase coexistence. The third category of projects deals with problems related to conformal invariance in 2D critical models. Here the fractal properties of the so-called SLE boundaries will be investigated and a model of random fractal trees will be analyzed. The final category involves problems of small-world phenomena. The specific problem of interest here is the growth of the graph distance in a critical model of Euclidean-based random graphs.On a broader level, the proposal hopes to address a series of questions that all have their origin in physics, chemistry, engineering and/or social sciences. A particular attention will be paid to the phenomena of phase transitions in which the overall character of the system undergoes a sudden, and often rather drastic, change while the external conditions vary smoothly through a particular, transitional, value. Examples of such transitions are ample in physical sciences (e.g., freezing or melting in physical chemistry) and engineering (e.g., jams in internet traffic); but they also have their natural counterparts in social sciences (e.g., opinion spreading in social networks). Much of this proposal is spent on studying very specific mathematical problems of these types. For instance, one of the proposed projects deals with the appearance of magnetism in transition-metal compounds, another offers to shed some light on the theoretical aspects of brine-pocket formation in the sea ice, yet another project is devoted to the "degree of separation" of two individuals (or computer servers) in a thinly connected (communication) network. The common ground of several of these problems is the need of proper mathematical tools for their successful resolution. One of the goals of the present proposal is to develop such tools and disseminate their main ideas to the scientific community at large.
这项建议的目的是研究一类介于概率和数学物理之间的问题。总共提出了十个具体项目,可分为四类。第一类涉及一阶相变问题。这里的具体研究对象包括与平均场理论相比较的相变的证明,稀释度对反铁磁体对称性破缺的影响,以及具有连续自旋的系统中伴随相变的各种效应。第二类是关于液滴和界面现象的。相应的项目包括研究溶剂-溶质体系的松弛到平衡,以及相共存时体系中压力的介观概念。第三类项目涉及与2D临界模型中的共形不变性有关的问题。在这里,我们将研究所谓的SLE边界的分形特性,并分析随机分形树模型。最后一类涉及小世界现象的问题。这里感兴趣的具体问题是基于欧几里得的随机图的临界模型中的图距离的增长。在更广泛的层面上,该提案希望解决一系列起源于物理、化学、工程和/或社会科学的问题。将特别注意相变现象,在相变现象中,系统的总体特征经历突然的、通常是相当剧烈的变化,而外部条件通过特定的、过渡性的值平稳地变化。这种转变的例子在物理科学(例如,物理化学中的冻结或融化)和工程(例如,互联网流量堵塞)中很多;但在社会科学中也有其自然对应的例子(例如,在社交网络中传播观点)。这项建议的大部分内容都花在研究这些类型的非常具体的数学问题上。例如,其中一个拟议的项目涉及过渡金属化合物中磁性的出现,另一个项目提出阐明海冰中盐穴形成的一些理论方面,还有另一个项目致力于研究两个人(或计算机服务器)在一个连接紧密的(通信)网络中的“分离程度”。其中几个问题的共同点是需要适当的数学工具来成功地解决它们。本提案的目标之一是开发这类工具,并将其主要思想传播给广大科学界。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marek Biskup其他文献

On support sets of the critical Liouville Quantum Gravity
关于临界刘维尔量子引力的支持集
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marek Biskup;Stephan Gufler;O. Louidor
  • 通讯作者:
    O. Louidor
Long-time tails in the parabolic Anderson model with bounded potential
具有有限潜力的抛物线安德森模型中的长期尾部
  • DOI:
    10.1214/aop/1008956688
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Marek Biskup;Wolfgang Koenig
  • 通讯作者:
    Wolfgang Koenig
Eigenvalue Fluctuations for Lattice Anderson Hamiltonians
格子安德森哈密顿量的特征值涨落
  • DOI:
    10.1137/14097389x
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Marek Biskup;Ryoki Fukushima;and Wolfgang Koenig
  • 通讯作者:
    and Wolfgang Koenig
Parallel interactive data analysis with PROOF
使用 PROOF 进行并行交互式数据分析
A Central Limit Theorem for the Effective Conductance: Linear Boundary Data and Small Ellipticity Contrasts
有效电导的中心极限定理:线性边界数据和小椭圆率对比

Marek Biskup的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marek Biskup', 18)}}的其他基金

Scaling Limits and Phase Transitions in Spatial Random Processes
空间随机过程中的尺度限制和相变
  • 批准号:
    1954343
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Interacting Particle Systems, Statistical Mechanics, and Related Topics
相互作用的粒子系统、统计力学及相关主题
  • 批准号:
    1850957
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Large Scale Phenomena in Models of Statistical Mechanics
统计力学模型中的大尺度现象
  • 批准号:
    1712632
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Large Scale Phenomena in Models of Statistical Mechanics
统计力学模型中的大尺度现象
  • 批准号:
    1407558
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Travel support for participation at the 6th Prague Summer School on Mathematical Statistical Physics
参加第六届布拉格数理统计物理暑期学校的差旅支持
  • 批准号:
    1144348
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Large scale phenomena in models of statistical mechanics
统计力学模型中的大规模现象
  • 批准号:
    1106850
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Large-Scale Phenomena in Models of Statistical Mechanics
统计力学模型中的大规模现象
  • 批准号:
    0949250
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Large-Scale Phenomena in Models of Statistical Mechanics
统计力学模型中的大规模现象
  • 批准号:
    0806198
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
  • 批准号:
    22108101
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
  • 批准号:
    31600794
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
针对Scale-Free网络的紧凑路由研究
  • 批准号:
    60673168
  • 批准年份:
    2006
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: SICB 2023 Symposium: Large-scale phenomena arising from small-scale biophysical processes
会议:SICB 2023 研讨会:小规模生物物理过程产生的大规模现象
  • 批准号:
    2233770
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A Large-Scale Framework for the Prediction of Radiative Phenomena
预测辐射现象的大规模框架
  • 批准号:
    535327-2019
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A Large-Scale Framework for the Prediction of Radiative Phenomena
预测辐射现象的大规模框架
  • 批准号:
    535327-2019
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
A Large-Scale Framework for the Prediction of Radiative Phenomena
预测辐射现象的大规模框架
  • 批准号:
    535327-2019
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Large Scale Phenomena in Models of Statistical Mechanics
统计力学模型中的大尺度现象
  • 批准号:
    1712632
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Large-scale first-principles simulations of non-adiabatic and non-equilibrium phenomena in nano-structured materials
纳米结构材料中非绝热和非平衡现象的大规模第一原理模拟
  • 批准号:
    16K05478
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Large Scale Phenomena in Models of Statistical Mechanics
统计力学模型中的大尺度现象
  • 批准号:
    1407558
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Spontaneous flow pattern formation in fluids --- singularity and large scale flow phenomena
流体中自发流型的形成——奇点和大规模流动现象
  • 批准号:
    24340016
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Theoretical Study of Magnetic-Field-Induced Anomalous Quantum Phenomena of Frustrated Magnets by Large-Scale Parallel Calculations
通过大规模并行计算对受抑磁体的磁场感应反常量子现象进行理论研究
  • 批准号:
    24540348
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了