Finiteness Conditions and Index in Semigroups and Monoids

半群和幺半群中的有限性条件和索引

基本信息

  • 批准号:
    EP/E043194/1
  • 负责人:
  • 金额:
    $ 25.87万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

A semigroup is one of the most simple, and fundamental, of mathematical objects. The ingredients of a semigroup are a set (i.e. a collection of symbols) along with an operation, often called multiplication, defined on this set (i.e. a method for combining pairs of elements from the set to get new elements from that set). For a semigroup this operation must be associative, which means that when we multiply a string of elements from the set together it does not matter how the terms are bracketed. A very easy example is to take the set of natural numbers 1, 2, 3, ... etc. along with the operation of addition +. Of course, if a, b and c are natural numbers then (a+b)+c = a+(b+c) and so this gives an example of a semigroup. Far more complicated and interesting examples of semigroup exist than this one. One thing that does make this example slightly interesting is the fact that it is an infinite semigroup. A more interesting example of an infinite semigroup is a so called free semigroup . We begin with a set A called an alphabet, say for example we let A be the set containing the letters a,b and c. We then consider all words we can make by stringing together letters of the alphabet (note that these are not words in the usual sense, since they do not need to have any meaning). In our example abc is a word, as is bbcabcbcba. If we take the set of all possible words along with the operation of concatenation (joining together) of words then we obtain a semigroup, called the free semigroup over the alphabet A. So for example we can multiply the word abc with the word bcc to obtain the word abcbcc. Taking this one stage further we come to the concept of a semigroup presentation . A semigroup presentation is given by an alphabet, like we had for the free semigroup above, along with a set of pairs of words R called relations. The pairs of words in R are usually written with an equals sign separating them. For example we could take A to be the set with a,b and c as our alphabet, as above, and let R be the set of relations abc = a and bca = a. These relations may now be applied to words transforming one word into another. For example, we can apply the relation abc = a to the word cabcabcccbc to obtain the word cabcaccbc (we replaced abc which appears in the middle of the first word by the word a since abc = a is one of our relations). In this way we create sets of words that are equivalent to one another in the sense that we can move between them by applying the rules from R. We can now consider these sets of words as objects and, in the natural way, we can define an operation of multiplication on these objects. The resulting structure is a semigroup and we call it the semigroup defined by the presentation (A,R). If the sets A and R may be chosen to be finite then the semigroup is said to be finitely presented . Every finite semigroup is finitely presented but there are also many infinite semigroups that are also finitely presented. As a result presentations are a very useful tool for working with infinite semigroups because, in many situations, they give us a way of representing an infinite object, the semigroup, using a finite amount of information, the presentation. This research project is centred around the study of infinite semigroups via presentations. Given a semigroup, any other semigroup that can be found inside that semigroup is called a subsemigroup. One of the main aims of this research project is to consider the relationship between the properties of infinite semigroups (represented using presentations) and those of its subsemigroups. In particular my interest is in developing methods for measuring the difference in size between a semigroup and its substructures. This measurement should have the property that when the semigroup and subsemigroup are measured to be close together they will share may algebraic, combinatorial and computational properties.
半群是最简单、最基本的数学对象之一。半群的成分是一个集合(即符号的集合)以及在此集合上定义的通常称为乘法的运算(即组合集合中的元素对以从该集合中获取新元素的方法)。对于半群,此运算必须是关联的,这意味着当我们将集合中的一串元素相乘时,这些项如何括起来并不重要。一个非常简单的例子是采用自然数集合 1, 2, 3, ... 等以及加法 + 运算。当然,如果 a、b 和 c 是自然数,则 (a+b)+c = a+(b+c),因此这给出了半群的示例。存在比这个更复杂、更有趣的半群例子。确实使这个例子有点有趣的一件事是它是一个无限半群。无限半群的一个更有趣的例子是所谓的自由半群。我们从称为字母表的集合 A 开始,例如我们让 A 为包含字母 a、b 和 c 的集合。然后,我们考虑通过将字母表中的字母串在一起可以组成的所有单词(请注意,这些不是通常意义上的单词,因为它们不需要具有任何含义)。在我们的示例中,abc 是一个单词,bbcabcbcba 也是一个单词。如果我们采用所有可能单词的集合以及单词的串联(连接在一起)操作,那么我们将获得一个半群,称为字母表 A 上的自由半群。例如,我们可以将单词 abc 与单词 bcc 相乘以获得单词 abcbcc。进一步推进这一阶段,我们提出了半群演示的概念。半群表示由字母表给出,就像我们上面的自由半群一样,以及一组称为关系的词对 R 。 R 中的单词对通常用等号分隔。例如,如上所述,我们可以将 A 视为以 a、b 和 c 作为字母表的集合,并令 R 为关系 abc = a 和 bca = a 的集合。这些关系现在可以应用于将一个单词转换为另一个单词的单词。例如,我们可以将关系 abc = a 应用于单词 cabcabcccbc 以获得单词 cabcaccbc (我们将出现在第一个单词中间的 abc 替换为单词 a,因为 abc = a 是我们的关系之一)。通过这种方式,我们创建了彼此等价的单词集,因为我们可以通过应用 R 中的规则在它们之间移动。我们现在可以将这些单词集视为对象,并且以自然的方式,我们可以定义这些对象的乘法运算。由此产生的结构是一个半群,我们将其称为由表示(A,R)定义的半群。如果集合 A 和 R 可以被选择为有限的,则半群被称为有限呈现。每个有限半群都是有限表示的,但也有许多无限半群也是有限表示的。因此,表示对于处理无限半群来说是一个非常有用的工具,因为在许多情况下,它们为我们提供了一种使用有限数量的信息(即表示)来表示无限对象(半群)的方法。该研究项目的重点是通过演示研究无限半群。给定一个半群,可以在该半群内找到的任何其他半群称为子半群。该研究项目的主要目标之一是考虑无限半群的性质(使用演示表示)与其子半群的性质之间的关系。我特别感兴趣的是开发测量半群及其子结构之间大小差异的方法。这种测量应该具有以下性质:当半群和子半群被测量为接近时,它们将共享可能的代数、组合和计算性质。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On maximal subgroups of free idempotent generated semigroups
  • DOI:
    10.1007/s11856-011-0154-x
  • 发表时间:
    2011-09
  • 期刊:
  • 影响因子:
    1
  • 作者:
    R. Gray;N. Ruškuc
  • 通讯作者:
    R. Gray;N. Ruškuc
Locally-finite connected-homogeneous digraphs
局部有限连通齐次有向图
  • DOI:
    10.1016/j.disc.2010.12.017
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Gray R
  • 通讯作者:
    Gray R
Automorphism groups of countable algebraically closed graphs and endomorphisms of the random graph
可数代数闭图的自同构群和随机图的自同态
Groups acting on semimetric spaces and quasi-isometries of monoids
作用于半群空间和幺半群拟等距的群
IDEALS AND FINITENESS CONDITIONS FOR SUBSEMIGROUPS
子半群的理想和有限条件
  • DOI:
    10.1017/s0017089513000086
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    GRAY R
  • 通讯作者:
    GRAY R
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Gray其他文献

A maximum power point tracking algorithm for photovoltaic applications
光伏应用的最大功率点跟踪算法
  • DOI:
    10.1117/12.2016257
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Nelatury;Robert Gray
  • 通讯作者:
    Robert Gray
A follow-up study of attentional behavior in 6-year-old children exposed prenatally to marihuana, cigarettes, and alcohol.
一项针对产前接触大麻、香烟和酒精的 6 岁儿童注意力行为的后续研究。
  • DOI:
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Peter A. Fried;B. Watkinson;Robert Gray
  • 通讯作者:
    Robert Gray
Examining random and designed tests to detect code mistakes in scientific software
检查随机和设计的测试以检测科学软件中的代码错误
  • DOI:
    10.1016/j.jocs.2010.12.002
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Kelly;Robert Gray;Yizhen Shao
  • 通讯作者:
    Yizhen Shao
MP70-05 PREDICTORS OF OPEN CONVERSION DURING MINIMALLY INVASIVE RENAL SURGERY IN ENGLAND
  • DOI:
    10.1016/j.juro.2015.02.2530
  • 发表时间:
    2015-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rajesh Nair;Robert Gray;Christopher J. Anderson;Sarah Fowler;Tim S. O'Brien;Pieter J. Le Roux
  • 通讯作者:
    Pieter J. Le Roux
The changing landscape of axillary surgery: Which breast cancer patients may still benefit from complete axillary lymph node dissection?
腋窝手术不断变化的格局:哪些乳腺癌患者仍可能受益于完整的腋窝淋巴结清扫术?
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    L. Mcghan;A. Dueck;Robert Gray;N. Wasif;A. McCullough;B. Pockaj
  • 通讯作者:
    B. Pockaj

Robert Gray的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Gray', 18)}}的其他基金

Algorithmic, topological and geometric aspects of infinite groups, monoids and inverse semigroups
无限群、幺半群和逆半群的算法、拓扑和几何方面
  • 批准号:
    EP/V032003/1
  • 财政年份:
    2022
  • 资助金额:
    $ 25.87万
  • 项目类别:
    Fellowship
Special inverse monoids: subgroups, structure, geometry, rewriting systems and the word problem
特殊逆幺半群:子群、结构、几何、重写系统和应用题
  • 批准号:
    EP/N033353/1
  • 财政年份:
    2016
  • 资助金额:
    $ 25.87万
  • 项目类别:
    Research Grant
Source Coding and Simulation
源代码和模拟
  • 批准号:
    0846199
  • 财政年份:
    2008
  • 资助金额:
    $ 25.87万
  • 项目类别:
    Standard Grant
Travel Support for a Workshop on Mentoring for Academia
学术界指导研讨会的差旅支持
  • 批准号:
    0652510
  • 财政年份:
    2007
  • 资助金额:
    $ 25.87万
  • 项目类别:
    Standard Grant
RI: Statistical Modeling of Prosodic Features in Speech Technology
RI:语音技术中韵律特征的统计建模
  • 批准号:
    0710833
  • 财政年份:
    2007
  • 资助金额:
    $ 25.87万
  • 项目类别:
    Continuing Grant
Nomination of Robert M. Gray for the PAESMEM Award
罗伯特·M·格雷 (Robert M. Gray) 提名 PAESMEM 奖
  • 批准号:
    0227685
  • 财政年份:
    2003
  • 资助金额:
    $ 25.87万
  • 项目类别:
    Standard Grant
Quantization for Signal Compression, Classification, and Mixture Modeling
信号压缩、分类和混合建模的量化
  • 批准号:
    0309701
  • 财政年份:
    2003
  • 资助金额:
    $ 25.87万
  • 项目类别:
    Continuing Grant
Gauss Mixture Quantization for Image Compression and Segmentation
用于图像压缩和分割的高斯混合量化
  • 批准号:
    0073050
  • 财政年份:
    2000
  • 资助金额:
    $ 25.87万
  • 项目类别:
    Continuing Grant
Compression, Classification and Image Segmentation
压缩、分类和图像分割
  • 批准号:
    9706284
  • 财政年份:
    1997
  • 资助金额:
    $ 25.87万
  • 项目类别:
    Continuing Grant
U.S.-France Cooperative Research: Combined Compression and Classification
美法合作研究:联合压缩和分类
  • 批准号:
    9603498
  • 财政年份:
    1997
  • 资助金额:
    $ 25.87万
  • 项目类别:
    Standard Grant

相似海外基金

How will Emperor Penguins Respond to Changing Ice Conditions (EPIC)?
帝企鹅将如何应对不断变化的冰况(EPIC)?
  • 批准号:
    NE/Y00115X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.87万
  • 项目类别:
    Research Grant
Electrical conductivity measurements of silicate melts at the Earth's mantle conditions
地幔条件下硅酸盐熔体的电导率测量
  • 批准号:
    24K17146
  • 财政年份:
    2024
  • 资助金额:
    $ 25.87万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
New biocatalysts for selective chemical oxidations under extreme conditions
用于极端条件下选择性化学氧化的新型生物催化剂
  • 批准号:
    DP240101500
  • 财政年份:
    2024
  • 资助金额:
    $ 25.87万
  • 项目类别:
    Discovery Projects
Care and Repair: Rethinking Contemporary Curation for Conditions of Crisis
护理与修复:重新思考危机条件下的当代策展
  • 批准号:
    DP240102206
  • 财政年份:
    2024
  • 资助金额:
    $ 25.87万
  • 项目类别:
    Discovery Projects
Understanding and treating neurogenetic conditions related to the Kennedy pathway
了解和治疗与肯尼迪通路相关的神经遗传疾病
  • 批准号:
    MR/Y014251/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.87万
  • 项目类别:
    Research Grant
Storming Immune Monogenic Conditions through Multiomic and Gene Editing Approaches
通过多组学和基因编辑方法攻克免疫单基因条件
  • 批准号:
    EP/Y032500/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.87万
  • 项目类别:
    Research Grant
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
  • 批准号:
    24K16928
  • 财政年份:
    2024
  • 资助金额:
    $ 25.87万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Fatigue Life Assessment of Structures under Realistic Loading Conditions
实际载荷条件下结构的疲劳寿命评估
  • 批准号:
    DP240103201
  • 财政年份:
    2024
  • 资助金额:
    $ 25.87万
  • 项目类别:
    Discovery Projects
Stability conditions: their topology and applications
稳定性条件:拓扑和应用
  • 批准号:
    DP240101084
  • 财政年份:
    2024
  • 资助金额:
    $ 25.87万
  • 项目类别:
    Discovery Projects
Human-centric Digital Twin Approaches to Trustworthy AI and Robotics for Improved Working Conditions
以人为本的数字孪生方法,实现值得信赖的人工智能和机器人技术,以改善工作条件
  • 批准号:
    10109582
  • 财政年份:
    2024
  • 资助金额:
    $ 25.87万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了