Disorder, Topology and Frustration in Quantum Materials

量子材料中的无序、拓扑和挫败

基本信息

  • 批准号:
    2310318
  • 负责人:
  • 金额:
    $ 37.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

NONTECHNICAL SUMMARYThis award supports theoretical research with an aim to understand the effects of disorder in a novel phase of matter called the quantum spin liquid. In this unique phase, electron spins in a material do not establish ordered patterns, even at zero temperature, as they normally do in conventional magnets, but remain liquid-like due to the peculiarities of quantum mechanics. This phase has been a central theme in condensed matter physics for decades, both from a fundamental perspective and in terms of its potential applications in novel technologies, such as their promise for building robust quantum computers. It is known that the properties of the spin liquid phase in real materials can be modified or destroyed in the presence of disorder, such as atomic imperfections due to missing atoms or impurities. In this project, the PI and her team will investigate how different types of disorder in real materials can suppress or enhance the discernibility of quantum spin liquid phase and the unique quantum mechanical properties associated with this phase. This theoretical research will be conducted in close collaboration with experimental studies.This award also supports the PI's educational and outreach activities that are linked to the research projects. Graduate and undergraduate students will be trained in condensed matter physics with a particular eye toward broadening participation of underrepresented groups in the research projects. The PI will also organize summer schools on modern condensed matter physics and collaborate with the Weisman Art Museum at the University of Minnesota to develop a new program for undergraduate students that combines artistic and scientific disciplines. TECHNICAL SUMMARY This award supports theoretical research with an aim to understand frustration and disorder effects in quantum magnets with strong spin-orbit coupling, non-trivial topology and correlations. This broad field has recently experienced significant advances in both theory and experiment. In particular, the quantum spin liquid phase has been one of the central themes in condensed matter physics, owing to their remarkable emergent properties, including long-range entanglement, topological degeneracy and fractionalized excitations. A growing number of candidate magnetic materials are believed to be adequately described by quantum spin liquid models. Some level of disorder is inevitable in real quantum spin liquid candidate materials, which makes it necessary to understand the competition between quantum fluctuations and randomness in order to unveil the true nature of their low-energy phase. One of the main goals of this project is to expand the current understanding of the effects of disorder in quantum magnets. The PI will study how quantum spin liquids respond to various forms of disorder, such as dislocations, vacancies, impurities, and bond randomness. A second goal of this project is to understand novel quantum phases arising from a collective behavior of correlated electrons in the presence of strong spin-orbit coupling and non-trivial topology. The PI will study both candidate materials and theoretical models proximate to the Kitaev honeycomb model and, more generally, on systems with strongly anisotropic bond-dependent interactions.This award also supports the PI's educational and outreach activities that are linked to the research projects. Graduate and undergraduate students will be trained in condensed matter physics with a particular eye toward broadening participation of underrepresented groups in the research projects. The PI will also organize summer schools on modern condensed matter physics and collaborate with the Weisman Art Museum at the University of Minnesota to develop a new program for undergraduate students that combines artistic and scientific disciplines.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性总结该奖项支持理论研究,旨在了解一种称为量子自旋液体的物质新相的无序效应。在这个独特的阶段,材料中的电子自旋即使在零温度下也不会像传统磁体中那样建立有序的模式,但由于量子力学的特殊性,它们仍然保持液体状。几十年来,这一阶段一直是凝聚态物理学的中心主题,无论是从基础角度还是从其在新技术中的潜在应用方面,例如它们对构建强大的量子计算机的承诺。众所周知,在存在无序的情况下,例如由于缺少原子或杂质而导致的原子缺陷,可以改变或破坏真实的材料中的自旋液相的性质。在这个项目中,PI和她的团队将研究真实的材料中的不同类型的无序如何抑制或增强量子自旋液相的稳定性以及与此相关联的独特量子力学性质。这项理论研究将与实验研究密切合作进行。该奖项还支持PI与研究项目相关的教育和外展活动。研究生和本科生将接受凝聚态物理学方面的培训,特别着眼于扩大研究项目中代表性不足的群体的参与。PI还将组织现代凝聚态物理暑期学校,并与明尼苏达大学的魏斯曼艺术博物馆合作,为本科生开发一个结合艺术和科学学科的新项目。该奖项支持理论研究,旨在了解具有强自旋轨道耦合,非平凡拓扑和相关性的量子磁体中的挫折和无序效应。这个广阔的领域最近在理论和实验方面都取得了重大进展。特别是,量子自旋液相已经成为凝聚态物理的中心主题之一,由于其显着的涌现性质,包括长程纠缠,拓扑简并和分数激发。越来越多的候选磁性材料被认为可以用量子自旋液体模型来描述。在真实的量子自旋液体候选材料中,一定程度的无序是不可避免的,这使得有必要了解量子涨落和随机性之间的竞争,以揭示其低能相的真实性质。该项目的主要目标之一是扩大目前对量子磁体中无序效应的理解。PI将研究量子自旋液体如何响应各种形式的无序,如位错,空位,杂质和键随机性。该项目的第二个目标是了解在强自旋轨道耦合和非平凡拓扑结构存在下,相关电子的集体行为所产生的新量子相。PI将研究与Kitaev蜂窝模型接近的候选材料和理论模型,以及更一般的具有强各向异性键依赖相互作用的系统。该奖项还支持PI与研究项目相关的教育和推广活动。研究生和本科生将接受凝聚态物理学方面的培训,特别着眼于扩大研究项目中代表性不足的群体的参与。PI还将组织现代凝聚态物理学暑期班,并与明尼苏达大学的魏斯曼艺术博物馆合作,为本科生开发一个结合艺术和科学学科的新项目。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Natalia Perkins其他文献

Natalia Perkins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Natalia Perkins', 18)}}的其他基金

Topology and Frustration in Spin-Orbit Coupled Quantum Magnets
自旋轨道耦合量子磁体的拓扑和挫败感
  • 批准号:
    1929311
  • 财政年份:
    2020
  • 资助金额:
    $ 37.54万
  • 项目类别:
    Continuing Grant
CAREER: Emergent Phases of Correlated Electrons in Materials with Spin-Orbit Coupling and Magnetic Frustration
职业:具有自旋轨道耦合和磁挫败的材料中相关电子的涌现相
  • 批准号:
    1511768
  • 财政年份:
    2014
  • 资助金额:
    $ 37.54万
  • 项目类别:
    Continuing Grant
CAREER: Emergent Phases of Correlated Electrons in Materials with Spin-Orbit Coupling and Magnetic Frustration
职业:具有自旋轨道耦合和磁挫败的材料中相关电子的涌现相
  • 批准号:
    1255544
  • 财政年份:
    2013
  • 资助金额:
    $ 37.54万
  • 项目类别:
    Continuing Grant
Quantum Spin-Orbital Systems: Models and Spectroscopies
量子自旋轨道系统:模型和光谱
  • 批准号:
    1005932
  • 财政年份:
    2010
  • 资助金额:
    $ 37.54万
  • 项目类别:
    Continuing Grant

相似海外基金

Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
  • 批准号:
    2348830
  • 财政年份:
    2024
  • 资助金额:
    $ 37.54万
  • 项目类别:
    Standard Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
  • 批准号:
    2400006
  • 财政年份:
    2024
  • 资助金额:
    $ 37.54万
  • 项目类别:
    Standard Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
  • 批准号:
    2340394
  • 财政年份:
    2024
  • 资助金额:
    $ 37.54万
  • 项目类别:
    Continuing Grant
Conference: Midwest Topology Seminar
会议:中西部拓扑研讨会
  • 批准号:
    2341204
  • 财政年份:
    2024
  • 资助金额:
    $ 37.54万
  • 项目类别:
    Standard Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
  • 批准号:
    2300172
  • 财政年份:
    2024
  • 资助金额:
    $ 37.54万
  • 项目类别:
    Continuing Grant
Algebraic Structures in String Topology
弦拓扑中的代数结构
  • 批准号:
    2405405
  • 财政年份:
    2024
  • 资助金额:
    $ 37.54万
  • 项目类别:
    Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
  • 批准号:
    2349401
  • 财政年份:
    2024
  • 资助金额:
    $ 37.54万
  • 项目类别:
    Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 37.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stability conditions: their topology and applications
稳定性条件:拓扑和应用
  • 批准号:
    DP240101084
  • 财政年份:
    2024
  • 资助金额:
    $ 37.54万
  • 项目类别:
    Discovery Projects
Algorithmic topology in low dimensions
低维算法拓扑
  • 批准号:
    EP/Y004256/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.54万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了