Spin Qubits and Spin Decoherence in Graphene Quantum Dots

石墨烯量子点中的自旋量子位和自旋退相干

基本信息

项目摘要

Graphene quantum dots are a unique material system to study the quantum to classical crossover. The reason is the feasibility to actively reduce the bath degrees of freedom in this quantum dissipative system. A quantum dissipative system consists by definition of a small quantum system and a larger bath that are coupled to each other. In graphene quantum dots, the system could be the spin of a single electron (captured inside the dot) and the bath degrees of freedom would then be the nuclear spins of the 13C atoms of the host material. The coupling is mediated by the hyperfine interaction. At natural abundance of 1% 13C atoms, the number of bath degrees of freedom in a typically sized graphene quantum dot would still be quite large. However, isotopic purification enables us to reduce the 13C content with respect to the 12C content that does not carry any nuclear spin at all. Therefore, it is in principle possible to constantly reduce the bath degrees of freedom.We would like to study the dynamics of the electron spin as well as the nuclear spins in a graphene quantum dot. This analysis is interesting both from a quantum computing as well as a fundamental physics point of view. To do so, we will employ a combination of numerical methods (based on exact diagonalization) and analytical methods (based on the Nakajima-Zwanzig equation). We expect to discover interesting new physics especially in the crossover regime of an intermediate number of bath degrees of freedom, for instance, related to spin decoherence and relaxation.
石墨烯量子点是研究量子与经典交叉的独特材料系统。原因是在这个量子耗散系统中主动降低浴自由度的可行性。根据定义,量子耗散系统由相互耦合的小量子系统和较大的浴组成。在石墨烯量子点中,系统可以是单个电子的自旋(被捕获在点内),而浴自由度将是主体材料的 13C 原子的核自旋。耦合是由超精细相互作用介导的。在 1% 13C 原子的自然丰度下,典型尺寸的石墨烯量子点中的浴自由度数量仍然相当大。然而,同位素纯化使我们能够相对于根本不携带任何核自旋的 12C 含量减少 13C 含量。因此,原则上可以不断降低浴的自由度。我们想研究石墨烯量子点中电子自旋和核自旋的动力学。从量子计算和基础物理学的角度来看,这种分析都很有趣。为此,我们将采用数值方法(基于精确对角化)和分析方法(基于 Nakajima-Zwanzig 方程)的组合。我们期望发现有趣的新物理,特别是在中间数量的浴自由度的交叉区域中,例如,与自旋退相干和弛豫相关的交叉区域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Björn Trauzettel其他文献

Professor Dr. Björn Trauzettel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Björn Trauzettel', 18)}}的其他基金

Spin Dynamics in Graphene Quantum Dots
石墨烯量子点的自旋动力学
  • 批准号:
    263366350
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Transport properties of bilayer topological insulators
双层拓扑绝缘体的输运特性
  • 批准号:
    237750603
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Non-equilibrium transport properties of helical Tomonaga-Luttinger liquids
螺旋 Tomonaga-Luttinger 液体的非平衡输运特性
  • 批准号:
    173218440
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Units
Entangled spin pairs in graphene ENTS
石墨烯中的纠缠自旋对 ENTS
  • 批准号:
    186138446
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Transporttheorie funktionaler Nanostrukturen in Graphen und Nanotubes
石墨烯和纳米管中功能纳米结构的输运理论
  • 批准号:
    76571960
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

QUIQ: Quantum information processed at attosecond timescale in double quantum-dot qubits
QUIQ:在双量子点量子位中以阿秒时间尺度处理的量子信息
  • 批准号:
    EP/Z000807/1
  • 财政年份:
    2025
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Electric and optical manipulation of 2D excitons for room temperature polariton blockade and valley qubits
用于室温极化子封锁和谷量子位的二维激子的电和光操纵
  • 批准号:
    EP/Y021789/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
  • 批准号:
    EP/X039889/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
  • 批准号:
    EP/X040380/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Applications and Architectures with Heterogeneous Superconducting Qubits
职业:异构超导量子位的应用和架构
  • 批准号:
    2338063
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Is to achieve a breakthrough in the problem of how to reliably control the many qubits in an errorfree and scalable way.
就是要在如何以无错误且可扩展的方式可靠地控制众多量子比特的问题上取得突破。
  • 批准号:
    2906479
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
CAREER: Robust Coherence and High Sensitivity in Metal-Ion Nuclear-Spin Qubits
职业:金属离子核自旋量子位的鲁棒相干性和高灵敏度
  • 批准号:
    2419717
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Electric and optical manipulation of 2D excitons for room temperature polariton blockade and valley qubits
用于室温极化子封锁和谷量子位的二维激子的电和光操纵
  • 批准号:
    EP/Y021339/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Protection of quantum information in small clusters of qubits
保护小量子位簇中的量子信息
  • 批准号:
    EP/Z000505/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Protection of quantum information in small clusters of qubits
保护小量子位簇中的量子信息
  • 批准号:
    EP/Z000572/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了