Measures of Dependence and Model Selection in Multiple Regression
多元回归中的依赖性测量和模型选择
基本信息
- 批准号:0505651
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Measures of Dependence and Model Selection in Multiple Regression Kjell A Doksum, DMS-0505651 AbstractThe investigators approach the dilemma that estimation of curves andsurfaces such as the conditional mean is virtually impossible with highdimensional data by focusing instead on the estimation of measures ofdependence between a response and a set of covariates. These measures ofdependence take the form of signal divided by noise. They are used toselect the subset of covariates to include in the model, and to choosetuning parameters. The signal measures the strength of the dependence of Yon a set of covariates. The noise is a standard error, that is, anestimate of the standard deviation of the estimated signal. It will besmall when too many variables are included in the model and when thetuning parameter sacrifices precision for smaller bias. Choosing variablesand tuning parameters that minimize signal to noise leads to proceduresthat converge at the traditional root-n rate. The investigators useasymptotic and Monte Carlo methods to investigate the properties of suchprocedures. They also relate them to traditional model and tuningparameter selection procedures and compare traditional procedures with thesignal to noise approach.The last few years have seen the establishment of large databases'containing a large number of variables that are to be related andcompared. A good example is the data produced by the human genome projectwhere a great number of genes need to be considered as possiblecontributers to a certain disease. Dealing with a large number ofvariables is difficult because many of them will contribute variability(noise) that may drown out potential interesting relationships (signals).The investigators approach this problem by using general flexible modelequations to represent important relationships between variables. Thenvariables and aspects of the equations are selected to minimize the ratioof signal to noise. This procedure automatically weeds out the variablesthat contribute mostly noise and selects an equation that emphasizes thesignals present in the data.
多元回归中的相关性测度与模型选择 Kjell A Doksum,DMS-0505651 研究人员的做法的困境,估计曲线和曲面,如条件平均值几乎是不可能的高维数据,而不是集中在估计的措施ofdependence之间的响应和一组协变量。这些相关性的度量采用信号除以噪声的形式。它们用于选择要包含在模型中的协变量子集,并用于优化调整参数。信号测量Y对一组协变量的依赖强度。噪声是一个标准误差,也就是说,估计信号的标准偏差的估计。当模型中包含太多的变量时,以及当调整参数为了更小的偏差而牺牲精度时,它将是小的。选择变量和调整参数,使信噪比最小化,导致程序以传统的root-n速率收敛。研究人员使用渐近和蒙特卡罗方法来研究这些过程的性质。他们还将它们与传统的模型和调谐参数选择程序联系起来,并将传统程序与信噪比方法进行比较。一个很好的例子是人类基因组计划产生的数据,其中大量的基因需要被认为是某种疾病的可能贡献者。处理大量的变量是困难的,因为它们中的许多变量会产生可能淹没潜在的有趣关系(信号)的变化(噪声)。研究人员通过使用通用的灵活模型方程来表示变量之间的重要关系来解决这个问题。然后选择方程的变量和方面,以最小化信噪比。这个过程会自动剔除主要贡献噪声的变量,并选择一个强调数据中存在的信号的方程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kjell Doksum其他文献
Kjell Doksum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kjell Doksum', 18)}}的其他基金
Measure of Dependence, Model Selection and Multiple Testing in Regression
回归中的依赖性测量、模型选择和多重检验
- 批准号:
0604931 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Continuing Grant
Topics in Nonparametric Analysis and Model Building
非参数分析和模型构建主题
- 批准号:
9971301 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Nonparametric Analysis and Model Building
数学科学:非参数分析和模型构建主题
- 批准号:
9625777 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Nonparametric Analysis andModel Building
数学科学:非参数分析和模型构建主题
- 批准号:
9307403 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Nonparametric and Semiparametric Regression and Correlation Analysis
数学科学:非参数和半参数回归及相关分析主题
- 批准号:
9106752 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Studies in Nonparametric and Semiparametric Statistics
数学科学:非参数和半参数统计研究
- 批准号:
8901603 - 财政年份:1989
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Studies in Non-Parametric Statistics
数学科学:非参数统计研究
- 批准号:
8602083 - 财政年份:1986
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Studies in Non-Parametric Statistics
数学科学:非参数统计研究
- 批准号:
8301716 - 财政年份:1983
- 资助金额:
-- - 项目类别:
Standard Grant
Statistical Problems in Connection With Model Selection
与模型选择相关的统计问题
- 批准号:
8102349 - 财政年份:1981
- 资助金额:
-- - 项目类别:
Continuing Grant
Travel to Attend: Multivariate Statistical Analysis, Mathematisches Forschungsinstitut Oberwolfach; Oberwolfach, West Germany; November 24 - December 2, 1978
前往参加:多元统计分析、Mathematicisches Forschungsinstitut Oberwolfach;
- 批准号:
7819361 - 财政年份:1978
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
基于时间序列间分位相依性(quantile dependence)的风险值(Value-at-Risk)预测模型研究
- 批准号:71903144
- 批准年份:2019
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Biochemical Studies Underlying Acute Ethanol's Antidepressant-like effects during Withdrawal in a Preclinical Model of Ethanol Dependence
乙醇依赖临床前模型中戒断期间乙醇急性抗抑郁样作用的生化研究
- 批准号:
10595193 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Reducing alcohol-seeking behavior in a rat model of alcohol dependence
减少酒精依赖大鼠模型的寻酒行为
- 批准号:
10684236 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Time dependence of entanglement entropy in the disordered Hubbard model
无序哈伯德模型中纠缠熵的时间依赖性
- 批准号:
564789-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Dependence of Sn whisker nucleation and growth on stress: real-time experiments and development of a predictive model
锡晶须成核和生长对应力的依赖性:实时实验和预测模型的开发
- 批准号:
1903071 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
Development of a generic physical model for breakdown and withstand voltages of air-gap insulated configurations in dependence of the atmospheric conditions
开发气隙绝缘配置的击穿电压和耐受电压与大气条件相关的通用物理模型
- 批准号:
410830434 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Experimental and computational analysis of rate dependence during cutting of viscoelastic natural product-based model systems
基于粘弹性天然产物的模型系统切割过程中速率依赖性的实验和计算分析
- 批准号:
420422342 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Time dependence of entanglement entropy in the disordered Hubbard model
无序哈伯德模型中纠缠熵的时间依赖性
- 批准号:
541458-2019 - 财政年份:2019
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Viscosity measurement of high temperature liquid by resonance surface oscillation for revising temperature dependence model of glass forming liquid viscosity
通过共振表面振荡测量高温液体粘度,以修正玻璃形成液体粘度的温度依赖性模型
- 批准号:
18H01386 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Genetic Basis of Opioid Dependence Vulnerablility in a Rodent Model
啮齿类动物模型中阿片类药物依赖脆弱性的遗传基础
- 批准号:
10454143 - 财政年份:2018
- 资助金额:
-- - 项目类别:
The Genetic Basis of Opioid Dependence Vulnerablility in a Rodent Model
啮齿类动物模型中阿片类药物依赖脆弱性的遗传基础
- 批准号:
9982281 - 财政年份:2018
- 资助金额:
-- - 项目类别: