Measure of Dependence, Model Selection and Multiple Testing in Regression
回归中的依赖性测量、模型选择和多重检验
基本信息
- 批准号:0604931
- 负责人:
- 金额:$ 14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-15 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal considers multiple regression procedures for analyzing the relationship between a response variable and a vector of covariates. It introduces an approach which deals with the dilemma that with highdimensional data the sparsity of data in regions of the sample space makes estimation of nonparametric curves and surfaces virtually impossible by choosing procedures whose relative variability (noise) is minimized. This is accomplished by abandoning the goal of trying to estimate true underlying curves and instead introducing measures of dependence that may be able to determine important relationships between variables. These dependence measures are expressed in terms of tuning constants that arechosen to maximize a signal to noise ratio. More precisely, the tuning parameter is a vector which gives the window size of local regions in the covariate space where we do local parametric fits of the response variableto the covariates. The signal is a local estimate of a dependence parameter which depends on the window size, and the noise is the standard error (SE, an estimate of the standard deviation) of this estimate. This approach of choosing the window size to maximize a signal to noise ratio lifts the curse of dimensionality because for regions with sparsity of data the SE is very large. It includes model selection where the variables that contribute insignificant signals compared to their SE's are eliminated.It is proposed to develop procedures that can be used to determine relationships between factors in studies involving a large number of factors and complex relationships. The proposed methodology is applicablegenerally without any restrictive conditions. It involves the discovery of key relationships in studies where there are a great number of factors that need to be screened for their relevance. The dimension reduction anddiscovery techniques in this proposal are useful in a variety of scientific and engineering contexts including genetics and bioinformatics. In summary, it is proposed to develop methods that will be useful in studies involving large and complex data sets that are common in many areas including studies of health, the environment, and finance.
本建议考虑多元回归程序来分析响应变量与协变量向量之间的关系。它引入了一种方法来处理这样的困境:对于高维数据,样本空间区域中数据的稀疏性使得通过选择相对变异性(噪声)最小的过程来估计非参数曲线和曲面几乎是不可能的。这是通过放弃试图估计真正的潜在曲线的目标,而是引入可能能够确定变量之间重要关系的依赖度量来实现的。这些依赖度量用调优常数来表示,调优常数是为了使信噪比最大化而选择的。更准确地说,调整参数是一个矢量,它给出了协变量空间中局部区域的窗口大小,在协变量空间中,我们对响应变量进行局部参数拟合。信号是依赖于窗口大小的依赖参数的局部估计,噪声是该估计的标准误差(SE,标准差的估计)。这种选择窗口大小以最大化信噪比的方法解除了维度的诅咒,因为对于具有数据稀疏性的区域,SE非常大。它包括模型选择,其中与SE相比贡献不显著信号的变量被消除。在涉及大量因素和复杂关系的研究中,建议开发可用于确定因素之间关系的程序。建议的方法一般适用,没有任何限制条件。它涉及在研究中发现关键关系,其中有大量因素需要筛选其相关性。本提案中的降维和发现技术在各种科学和工程环境中都很有用,包括遗传学和生物信息学。总而言之,建议发展在涉及大量复杂数据集的研究中有用的方法,这些数据集在许多领域都很常见,包括卫生、环境和金融研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kjell Doksum其他文献
Kjell Doksum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kjell Doksum', 18)}}的其他基金
Measures of Dependence and Model Selection in Multiple Regression
多元回归中的依赖性测量和模型选择
- 批准号:
0505651 - 财政年份:2005
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Topics in Nonparametric Analysis and Model Building
非参数分析和模型构建主题
- 批准号:
9971301 - 财政年份:1999
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Nonparametric Analysis and Model Building
数学科学:非参数分析和模型构建主题
- 批准号:
9625777 - 财政年份:1996
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Nonparametric Analysis andModel Building
数学科学:非参数分析和模型构建主题
- 批准号:
9307403 - 财政年份:1993
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Nonparametric and Semiparametric Regression and Correlation Analysis
数学科学:非参数和半参数回归及相关分析主题
- 批准号:
9106752 - 财政年份:1991
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
Mathematical Sciences: Studies in Nonparametric and Semiparametric Statistics
数学科学:非参数和半参数统计研究
- 批准号:
8901603 - 财政年份:1989
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
Mathematical Sciences: Studies in Non-Parametric Statistics
数学科学:非参数统计研究
- 批准号:
8602083 - 财政年份:1986
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Mathematical Sciences: Studies in Non-Parametric Statistics
数学科学:非参数统计研究
- 批准号:
8301716 - 财政年份:1983
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Statistical Problems in Connection With Model Selection
与模型选择相关的统计问题
- 批准号:
8102349 - 财政年份:1981
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
Travel to Attend: Multivariate Statistical Analysis, Mathematisches Forschungsinstitut Oberwolfach; Oberwolfach, West Germany; November 24 - December 2, 1978
前往参加:多元统计分析、Mathematicisches Forschungsinstitut Oberwolfach;
- 批准号:
7819361 - 财政年份:1978
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
相似国自然基金
基于时间序列间分位相依性(quantile dependence)的风险值(Value-at-Risk)预测模型研究
- 批准号:71903144
- 批准年份:2019
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Biochemical Studies Underlying Acute Ethanol's Antidepressant-like effects during Withdrawal in a Preclinical Model of Ethanol Dependence
乙醇依赖临床前模型中戒断期间乙醇急性抗抑郁样作用的生化研究
- 批准号:
10595193 - 财政年份:2023
- 资助金额:
$ 14万 - 项目类别:
Reducing alcohol-seeking behavior in a rat model of alcohol dependence
减少酒精依赖大鼠模型的寻酒行为
- 批准号:
10684236 - 财政年份:2022
- 资助金额:
$ 14万 - 项目类别:
Time dependence of entanglement entropy in the disordered Hubbard model
无序哈伯德模型中纠缠熵的时间依赖性
- 批准号:
564789-2021 - 财政年份:2021
- 资助金额:
$ 14万 - 项目类别:
University Undergraduate Student Research Awards
Dependence of Sn whisker nucleation and growth on stress: real-time experiments and development of a predictive model
锡晶须成核和生长对应力的依赖性:实时实验和预测模型的开发
- 批准号:
1903071 - 财政年份:2019
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
Development of a generic physical model for breakdown and withstand voltages of air-gap insulated configurations in dependence of the atmospheric conditions
开发气隙绝缘配置的击穿电压和耐受电压与大气条件相关的通用物理模型
- 批准号:
410830434 - 财政年份:2019
- 资助金额:
$ 14万 - 项目类别:
Research Grants
Experimental and computational analysis of rate dependence during cutting of viscoelastic natural product-based model systems
基于粘弹性天然产物的模型系统切割过程中速率依赖性的实验和计算分析
- 批准号:
420422342 - 财政年份:2019
- 资助金额:
$ 14万 - 项目类别:
Research Grants
Time dependence of entanglement entropy in the disordered Hubbard model
无序哈伯德模型中纠缠熵的时间依赖性
- 批准号:
541458-2019 - 财政年份:2019
- 资助金额:
$ 14万 - 项目类别:
University Undergraduate Student Research Awards
Viscosity measurement of high temperature liquid by resonance surface oscillation for revising temperature dependence model of glass forming liquid viscosity
通过共振表面振荡测量高温液体粘度,以修正玻璃形成液体粘度的温度依赖性模型
- 批准号:
18H01386 - 财政年份:2018
- 资助金额:
$ 14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Genetic Basis of Opioid Dependence Vulnerablility in a Rodent Model
啮齿类动物模型中阿片类药物依赖脆弱性的遗传基础
- 批准号:
10454143 - 财政年份:2018
- 资助金额:
$ 14万 - 项目类别:
The Genetic Basis of Opioid Dependence Vulnerablility in a Rodent Model
啮齿类动物模型中阿片类药物依赖脆弱性的遗传基础
- 批准号:
9982281 - 财政年份:2018
- 资助金额:
$ 14万 - 项目类别: