Topics in Nonparametric Analysis and Model Building
非参数分析和模型构建主题
基本信息
- 批准号:9971301
- 负责人:
- 金额:$ 14.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-09-01 至 2004-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9971301 This project is the continuation of our research on the question of how intuitive and concise linear model concepts and techniques can be extended to nonparametric settings and on the development of nonparametric techniques for model diagnostics, dimensionality reduction, and assessing adequacy of particular classes of models. Some of the procedures considered in this research are based on conditional versions of the familiar regression, covariance, and correlation coefficients, where the conditioning is on covariates restricted to neighborhoods. The size of the neighborhood serves as a resolution scale, and dependence of the response on the covariates is measured and summarized at multiple scales. Other procedures are curve or surface estimators and estimators of integral functionals of distributions. Many of the estimators to be considered depend on smoothing parameters needed in estimation of curves and surfaces. A large part of the research addresses the problem of developing reliable data-based methods for smoothing parameter selection. Properties of estimators are studied using both asymptotic methods and Monte Carlo simulations.The advent of computer data bases of unprecedented size and complexity, and the dramatic increase in computer power, makes desirable and possible the development of more flexible models, concepts, and procedures. These can be used to study relationships between variables and to construct models without the need of relying on rigid global assumptions. Much of the recent work in statistics has addressed this need for more general and flexible methods. This research further extends this work with a special focus on procedures that are counterparts to many commonly used linear model concepts and that expose important features in the data using intuitive and familiar ideas. The developed procedures are applied to financial, economic, insurance, medical, and other data.
9971301本项目是我们对如何将直观和简洁的线性模型概念和技术扩展到非参数设置以及开发用于模型诊断、降维和评估特定类别模型的充分性的非参数技术的研究的继续。本研究中考虑的一些程序是基于熟悉的回归、协方差和相关系数的条件版本,其中条件作用于限制在邻域的协变量。邻域的大小作为分辨率尺度,在多个尺度上测量和总结响应对协变量的依赖性。其他程序是曲线或曲面估计和分布的积分函数估计。要考虑的许多估计量依赖于曲线和曲面估计所需的平滑参数。研究的很大一部分解决了开发可靠的基于数据的平滑参数选择方法的问题。用渐近方法和蒙特卡罗模拟研究了估计量的性质。空前规模和复杂性的计算机数据库的出现,以及计算机能力的急剧增长,使得开发更灵活的模型、概念和过程成为可能。这些可以用来研究变量之间的关系,并在不需要依赖严格的全局假设的情况下构建模型。最近在统计方面的许多工作都解决了对更一般和更灵活的方法的需求。本研究进一步扩展了这项工作,特别关注与许多常用线性模型概念对应的程序,并使用直观和熟悉的想法揭示数据中的重要特征。所开发的程序适用于金融、经济、保险、医疗和其他数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kjell Doksum其他文献
Kjell Doksum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kjell Doksum', 18)}}的其他基金
Measure of Dependence, Model Selection and Multiple Testing in Regression
回归中的依赖性测量、模型选择和多重检验
- 批准号:
0604931 - 财政年份:2006
- 资助金额:
$ 14.4万 - 项目类别:
Continuing Grant
Measures of Dependence and Model Selection in Multiple Regression
多元回归中的依赖性测量和模型选择
- 批准号:
0505651 - 财政年份:2005
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Nonparametric Analysis and Model Building
数学科学:非参数分析和模型构建主题
- 批准号:
9625777 - 财政年份:1996
- 资助金额:
$ 14.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Nonparametric Analysis andModel Building
数学科学:非参数分析和模型构建主题
- 批准号:
9307403 - 财政年份:1993
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Nonparametric and Semiparametric Regression and Correlation Analysis
数学科学:非参数和半参数回归及相关分析主题
- 批准号:
9106752 - 财政年份:1991
- 资助金额:
$ 14.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Studies in Nonparametric and Semiparametric Statistics
数学科学:非参数和半参数统计研究
- 批准号:
8901603 - 财政年份:1989
- 资助金额:
$ 14.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Studies in Non-Parametric Statistics
数学科学:非参数统计研究
- 批准号:
8602083 - 财政年份:1986
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
Mathematical Sciences: Studies in Non-Parametric Statistics
数学科学:非参数统计研究
- 批准号:
8301716 - 财政年份:1983
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
Statistical Problems in Connection With Model Selection
与模型选择相关的统计问题
- 批准号:
8102349 - 财政年份:1981
- 资助金额:
$ 14.4万 - 项目类别:
Continuing Grant
Travel to Attend: Multivariate Statistical Analysis, Mathematisches Forschungsinstitut Oberwolfach; Oberwolfach, West Germany; November 24 - December 2, 1978
前往参加:多元统计分析、Mathematicisches Forschungsinstitut Oberwolfach;
- 批准号:
7819361 - 财政年份:1978
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
相似海外基金
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2022
- 资助金额:
$ 14.4万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric Statistical Inference for Time Series Trend Analysis, and Statistical Modelling Methods with Applications in Health Research and Environmental Science
时间序列趋势分析的非参数统计推断以及在健康研究和环境科学中应用的统计建模方法
- 批准号:
RGPIN-2018-05578 - 财政年份:2022
- 资助金额:
$ 14.4万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric Statistical Inference for Time Series Trend Analysis, and Statistical Modelling Methods with Applications in Health Research and Environmental Science
时间序列趋势分析的非参数统计推断以及在健康研究和环境科学中应用的统计建模方法
- 批准号:
RGPIN-2018-05578 - 财政年份:2021
- 资助金额:
$ 14.4万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2021
- 资助金额:
$ 14.4万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric Inference for Extrme Value Analysis
极值分析的非参数推理
- 批准号:
DDG-2019-04206 - 财政年份:2021
- 资助金额:
$ 14.4万 - 项目类别:
Discovery Development Grant
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2020
- 资助金额:
$ 14.4万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric Bayesian Methods for Joint Analysis of Recurrent Events and Survival Time
用于重复事件和生存时间联合分析的非参数贝叶斯方法
- 批准号:
2015428 - 财政年份:2020
- 资助金额:
$ 14.4万 - 项目类别:
Standard Grant
Nonparametric Inference for Extrme Value Analysis
极值分析的非参数推理
- 批准号:
DDG-2019-04206 - 财政年份:2020
- 资助金额:
$ 14.4万 - 项目类别:
Discovery Development Grant
Nonparametric Statistical Inference for Time Series Trend Analysis, and Statistical Modelling Methods with Applications in Health Research and Environmental Science
时间序列趋势分析的非参数统计推断以及在健康研究和环境科学中应用的统计建模方法
- 批准号:
RGPIN-2018-05578 - 财政年份:2020
- 资助金额:
$ 14.4万 - 项目类别:
Discovery Grants Program - Individual
Enlargement of the scope of data analysis by extending nonparametric tests
通过扩展非参数检验扩大数据分析范围
- 批准号:
19K06856 - 财政年份:2019
- 资助金额:
$ 14.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)