SLE Properties
系统性红斑狼疮特性
基本信息
- 批准号:0505751
- 负责人:
- 金额:$ 3.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-01 至 2007-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The estimate for the upper bound of the Hausdorff dimension of the SLE boundary is already established by S. Rohde and O. Schramm. While a theorem on the Hausdorff dimension of the SLE trace was announced by V. Beffara, the boundary of the hull when kappa 4 remains an open conjecture. To get an estimate on the lower bound for the Hausdorff dimension of the SLE boundary, the asymptotic behavior of normalized (pre-)Schwarzian derivatives for the SLE backward flows is employed. The normalized (pre-)Schwarzian derivatives of SLE maps with higher order terms are continuous square integrable martingales with second moment obeying the Duplantier duality and they have correlations that decay exponentially in the hyperbolic distance. This method allows one to make a formal argument for a lower bound. Makarov's law of iterated logarithm makes it possible to compare harmonic measure to a Hausdorff measure associated with a logarithmico-exponential function. The goal of this project is to get the exact estimate for Makarov's law of iterated logarithm for SLE and compare harmonic measure to a Hausdorff measure with a best possible measure function.Since Stochastic Loewner Evolution (SLE) was introduced by Schramm, a lot of works have been done in this area by mathematicians and physicists in various areas like mathematical physics, probability theory and complex analysis. For example, SLE(6) was used to prove Mandelbrot's conjecture that the outer boundary of a planar Brownian path should have fractal dimension 4/3. On the other hand, several lattice models from statistical physics have been shown or conjectured to correspond to some SLE's. This project provides mathematical analysis for physicists' predictions like Duplantier's duality conjecture, which is derived by arguments from conformal field theory. It may also build up the methods to approach their mathematical proofs.
SLE边界的Hausdorff维数上界的估计已经由S。Rohde和O.施拉姆虽然关于SLE迹的Hausdorff维数的定理是由V. Beffara宣布的,但当kappa 4时船体的边界仍然是一个开放的猜想。 为了得到SLE边界的Hausdorff维数的下界估计,采用了SLE反向流的归一化(前)Schwarzian导数的渐近行为。具有高阶项的SLE映射的正规化(预)Schwarzian导数是二阶矩服从Duplantier对偶的连续平方可积鞅,并且它们具有在双曲距离内指数衰减的相关性.这种方法允许人们对下界进行正式论证。马卡罗夫重对数定律使得调和测度与同指数函数相关的豪斯多夫测度相比较成为可能。自Schramm提出随机Loewner演化(Stochastic Loewner Evolution,SLE)以来,数学物理、概率论、复分析等领域的数学家和物理学家在这方面做了大量的工作,并在此基础上,提出了一种新的基于调和测度和Hausdorff测度的SLE重对数律估计方法。例如,SLE(6)被用来证明Mandelbrot猜想,即平面布朗路径的外边界应该具有分形维数4/3。 另一方面,统计物理学中的几种格点模型已经被证明或证明与某些SLE相对应。该项目为物理学家的预测提供数学分析,如Duplantier的对偶猜想,这是由共形场论的论点推导出来的。也可以建立其数学证明的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Stroock其他文献
Daniel Stroock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Stroock', 18)}}的其他基金
Mathematical Sciences: Diffusion Processes and Related Topics
数学科学:扩散过程及相关主题
- 批准号:
9625782 - 财政年份:1996
- 资助金额:
$ 3.66万 - 项目类别:
Continuing grant
Mathematical Sciences: Diffusion Processes and Related Topics
数学科学:扩散过程及相关主题
- 批准号:
9302709 - 财政年份:1993
- 资助金额:
$ 3.66万 - 项目类别:
Continuing grant
Mathematical Sciences: Diffusion Processes and Related Topics
数学科学:扩散过程及相关主题
- 批准号:
8913328 - 财政年份:1989
- 资助金额:
$ 3.66万 - 项目类别:
Continuing grant
Mathematical Sciences: Diffusion Processes and Related Topics
数学科学:扩散过程及相关主题
- 批准号:
8611487 - 财政年份:1986
- 资助金额:
$ 3.66万 - 项目类别:
Continuing grant
Mathematical Sciences: Diffusion Processes and Related Topics
数学科学:扩散过程及相关主题
- 批准号:
8415211 - 财政年份:1984
- 资助金额:
$ 3.66万 - 项目类别:
Continuing grant
Diffusion Processes and Related Topics
扩散过程及相关主题
- 批准号:
7714881 - 财政年份:1977
- 资助金额:
$ 3.66万 - 项目类别:
Continuing Grant
Conference on Infinite Interacting Systems at Oberwolfach, West Germany-October 17-23, 1976
无限交互系统会议,西德 Oberwolfach,1976 年 10 月 17-23 日
- 批准号:
7623031 - 财政年份:1976
- 资助金额:
$ 3.66万 - 项目类别:
Standard Grant
Diffusion Processes and Related Topics
扩散过程及相关主题
- 批准号:
7418926 - 财政年份:1974
- 资助金额:
$ 3.66万 - 项目类别:
Continuing Grant
相似海外基金
A Novel Surrogate Framework for evaluating THM Properties of Bentonite
评估膨润土 THM 性能的新型替代框架
- 批准号:
DP240102053 - 财政年份:2024
- 资助金额:
$ 3.66万 - 项目类别:
Discovery Projects
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 3.66万 - 项目类别:
Training Grant
Collaborative Research: Compositionally and Structurally Modulated Ferroelastic Films for Unprecedented Superelastic Properties
合作研究:成分和结构调制的铁弹性薄膜,具有前所未有的超弹性特性
- 批准号:
2333551 - 财政年份:2024
- 资助金额:
$ 3.66万 - 项目类别:
Continuing Grant
Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
- 批准号:
2401482 - 财政年份:2024
- 资助金额:
$ 3.66万 - 项目类别:
Continuing Grant
Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
- 批准号:
2403804 - 财政年份:2024
- 资助金额:
$ 3.66万 - 项目类别:
Standard Grant
RUI: Investigating the Covalency of Intermolecular Interactions and its Effect on the Properties of Supramolecular Complexes.
RUI:研究分子间相互作用的共价性及其对超分子复合物性质的影响。
- 批准号:
2404011 - 财政年份:2024
- 资助金额:
$ 3.66万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
$ 3.66万 - 项目类别:
Standard Grant
Characterization of the distribution and properties of inert copper in seawater
海水中惰性铜的分布和性质表征
- 批准号:
2343416 - 财政年份:2024
- 资助金额:
$ 3.66万 - 项目类别:
Standard Grant
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
- 批准号:
2347294 - 财政年份:2024
- 资助金额:
$ 3.66万 - 项目类别:
Standard Grant
Exploring the contribution of cell wall components and osmotic pressure to mechanical properties that enable root growth
探索细胞壁成分和渗透压对促进根系生长的机械性能的贡献
- 批准号:
24K17868 - 财政年份:2024
- 资助金额:
$ 3.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists