Gaussian Methods and Small Value Problems
高斯方法和小值问题
基本信息
- 批准号:0505805
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Two fundamental phenomenons in probability theory are typical behaviors such as expected values and laws of large numbers, and rare events such as extremely big or small values. This research centers on developing Gaussian methods for the study of both typical behaviors and rare events of the type that positive random quantities take smaller values. The major objective is to extend the understanding of related topics and build a general theory based on systematic study of various techniques and applications. The isoperimetric type Gaussian inequalities provide comparisons between dependent (complected) structure and independent (simpler) one which becomes an equality in certain (possibility limiting) cases. They have been used as basic tools in various problems and played a crucial role in deeper understanding of random phenomenon. The recent development of several new techniques for Gaussian and closely related random processes broadened our understanding of small deviation probabilities and their connections with related topics of probability such as Gaussian random matrices, non-intersection exponents and random assignments. In turn, it suggests many further questions connected to applications in probability theory and geometric functional analysis. The very successful applications to lower tail probabilities, the Brownian pursuit models and the first exit times will be expanded to a detailed study of real zeros of random polynomials and Gaussian chaos.This research has a broader impact on diverse areas of probability, which is both a fundamental way of viewing the world and a core mathematical discipline. The theory of Gaussian processes is of fundamental importance in probability. Its development is centered on applications of the existing methods to a variety of fields and new techniques and problems motivated by current interests ofadvancing knowledge. The proposed research is a key step in the investigator's long term research plan of systematically developing new Gaussian methods geared for applications to closely related random processes. This research should improve our understanding of important random events and provide basic tools for the study of our random environment.
概率论中的两个基本现象是典型的行为,如期望值和大数定律,以及罕见的事件,如极大或极小的值。本研究的重点是发展高斯方法,用于研究典型行为和正随机量取较小值的罕见事件。 主要目标是扩展对相关主题的理解,并在系统研究各种技术和应用的基础上建立一般理论。 等周型高斯不等式提供了依赖(复杂)结构和独立(简单)结构之间的比较,在某些(可能性限制)情况下,独立结构变为相等。它们已被用作各种问题的基本工具,并在深入理解随机现象方面发挥了至关重要的作用。最近发展的几种新技术的高斯和密切相关的随机过程拓宽了我们的理解小偏差概率和它们的连接与相关的主题的概率,如高斯随机矩阵,非相交指数和随机分配。 反过来,它提出了许多进一步的问题连接到应用概率论和几何功能分析。在低尾概率、布朗追踪模型和首次退出时间等方面的成功应用将扩展到随机多项式的真实的零点和高斯混沌的详细研究,这一研究将对概率的各个领域产生更广泛的影响,概率既是观察世界的基本方式,也是数学的核心学科。高斯过程理论在概率论中具有根本的重要性。它的发展集中在现有的方法应用到各种领域和新技术和问题的推动下,当前的利益推进知识。拟议的研究是一个关键的一步,在调查员的长期研究计划,系统地开发新的高斯方法,面向应用程序密切相关的随机过程。 这项研究将提高我们对重要随机事件的理解,并为研究我们的随机环境提供基本工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wenbo Li其他文献
Reliability modeling for competing failure processes considering degradation rate variation under cumulative shock
考虑累积冲击下退化率变化的竞争失效过程的可靠性建模
- DOI:
10.1002/qre.3216 - 发表时间:
2022-10 - 期刊:
- 影响因子:2.3
- 作者:
Zhihua Wang;Shihao Cao;Wenbo Li;Chengrui Liu;Jingjing Mu - 通讯作者:
Jingjing Mu
The Bainaimiao Cu–Au–Mo Deposit
白乃庙铜金钼矿床
- DOI:
10.1007/978-981-16-1346-3_2 - 发表时间:
2021 - 期刊:
- 影响因子:1.8
- 作者:
Wenbo Li;Richen Zhong;Yan‐jing Chen;Q. Pi - 通讯作者:
Q. Pi
Design of Supplementary subsynchronous damping controller for HVDC transmission based on improved matrix beam algorithm and projective theorem
基于改进矩阵波束算法和射影定理的高压直流输电辅助次同步阻尼控制器设计
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Dapeng Xu;Zhihua Liu;Wenbo Li;Y. Gong - 通讯作者:
Y. Gong
UltraPixel: Advancing Ultra-High-Resolution Image Synthesis to New Peaks
UltraPixel:将超高分辨率图像合成推向新高峰
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jingjing Ren;Wenbo Li;Haoyu Chen;Renjing Pei;Bin Shao;Yong Guo;Long Peng;Fenglong Song;Lei Zhu - 通讯作者:
Lei Zhu
基于多源遥感数据的干旱监测
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Wenbo Li;Haixia He;Yang Cui;Ping Wang - 通讯作者:
Ping Wang
Wenbo Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wenbo Li', 18)}}的其他基金
AMC-SS Spatial models for populations with variable offspring laws
具有可变后代规律的种群的 AMC-SS 空间模型
- 批准号:
0706713 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Gaussian Methods and Probability Estimates of Rare Events
罕见事件的高斯方法和概率估计
- 批准号:
0204513 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
Small Ball Probabilities and Their Applications
小球概率及其应用
- 批准号:
9972012 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9627494 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Fellowship Award
Mathematical Sciences: Gaussian Measures and Small Ball Probabilities
数学科学:高斯测度和小球概率
- 批准号:
9503458 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SHF: Small: Methods and Architectures for Optimization and Hardware Acceleration of Spiking Neural Networks
SHF:小型:尖峰神经网络优化和硬件加速的方法和架构
- 批准号:
2310170 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
III: Small: Computational Methods for Multi-dimensional Data Integration to Improve Phenotype Prediction
III:小:多维数据集成的计算方法以改进表型预测
- 批准号:
2246796 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CPS: SMALL: Formal Methods for Safe, Efficient, and Transferable Learning-enabled Autonomy
CPS:SMALL:安全、高效和可迁移的学习自主的正式方法
- 批准号:
2231257 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
SaTC: CORE: Small: Probing Fairness of Ocular Biometrics Methods Across Demographic Variations
SaTC:核心:小:探索不同人口统计差异的眼部生物识别方法的公平性
- 批准号:
2345561 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
AF: Small: Low-Degree Methods for Optimization in Random Structures. Power and Limitations
AF:小:随机结构优化的低度方法。
- 批准号:
2233897 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
SHF: Small: Efficient, Deterministic and Formally Certified Methods for Solving Low-dimensional Linear Programs with Floating-point Precision
SHF:小型:用于以浮点精度求解低维线性程序的高效、确定性且经过正式认证的方法
- 批准号:
2312220 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
SERVICES FOR THE CHARACTERIZATION OF ABSORPTION, DISTRIBUTION, METABOLISM, EXCRETION, AND TOXICITY (ADMET) PROPERTIES OF SMALL-MOLECULE DRUG CANDIDATES USING STANDARDIZED IN VITRO METHODS IN SUPPORT O
使用标准化体外方法表征小分子候选药物的吸收、分布、代谢、排泄和毒性 (ADMET) 特性的服务
- 批准号:
10936131 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Computational methods to identify small molecule RNA binding sites
识别小分子 RNA 结合位点的计算方法
- 批准号:
573688-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Algorithms and Methods for small RNA studies
小 RNA 研究的算法和方法
- 批准号:
RGPIN-2017-06286 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
AF: Small: Algorithmic Algebraic Methods for Systems of Difference-Differential Equations
AF:小:差分微分方程组的算法代数方法
- 批准号:
2139462 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant