Small Value Theory in Probability

概率中的小值理论

基本信息

  • 批准号:
    0805929
  • 负责人:
  • 金额:
    $ 16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-06-15 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

Two fundamental phenomenons in probability theory are typical behaviors such as expected values, laws of large numbers and central limit theorems, and rare events such as extremely big or small values. This research centers on developing methods and theory for the study of both typical behaviors and rare events of the type that positive random quantities take smaller values. The major objective is to extend the understanding of five related areas and build a general small value theory based on systematic study of various techniques and applications. The isoperimetric type Gaussian inequalities provide comparisons between dependent (complected) structure and independent (simpler) one which becomes an equality in certain (possibility limiting) cases. They have been used as basic tools in various problems and played a crucial role in deeper understanding of random phenomenon. The recent development of several new techniques for Gaussian and closely related random processes broadened our understanding of small deviation probabilities and their connections with related topics of probability such as Gaussian random matrices, non-intersection exponents and random assignments.In turn, it suggests many further questions connected to applications in probability theory and geometric functional analysis. The very successful applications to lower tail probabilities, zeros of random functions and the first exit times will be expanded to a detailed study of Brownian pursuit models and Gaussian chaos.This research has a broader impact on diverse areas of probability, which is both a fundamental way of viewing the world and a core mathematical discipline. The theory of Gaussian (bell curve) processes is of fundamental importance in probability and statistics. Its development is centered on applications of the existing methods to a variety of fields and new techniques and problems motivated by current interests of advancing knowledge. The proposed research is a key step in the investigator's long term research plan of systematically developing new Gaussian methods geared for applications to closely related random processes. This research benefits both undergraduate and graduate education and research. Many open problems and results from the proposed study can be used as students course projects. It can stimulate the interests of students in leaning and studying probability theory. This research should improve our understanding of important random events and provide basic tools for the study of our random environment.
概率论的两个基本现象是期望值、大数定律、中心极限定理等典型行为和极小值等极小值等罕见事件。本研究的重点是发展研究典型行为和罕见事件的方法和理论,即正随机量取较小值的类型。主要目标是扩展对五个相关领域的理解,并在系统研究各种技术和应用的基础上建立一个通用的小价值理论。等周型高斯不等式提供了依赖(完整)结构和独立(更简单)结构之间的比较,这在某些(可能性限制)情况下成为一个等式。它们被用作解决各种问题的基本工具,在深入理解随机现象方面发挥了至关重要的作用。最近发展的几种高斯和密切相关的随机过程的新技术拓宽了我们对小偏差概率的理解,以及它们与概率的相关主题,如高斯随机矩阵、非相交指数和随机赋值的联系。反过来,它提出了许多与概率论和几何泛函分析应用有关的进一步问题。对低尾概率、随机函数的零和首次退出时间的非常成功的应用将扩展到对布朗追逐模型和高斯混沌的详细研究。这项研究对概率的各个领域有着更广泛的影响,这既是一种观察世界的基本方式,也是一门核心的数学学科。高斯(钟形曲线)过程理论在概率论和统计学中具有重要的基础意义。它的发展集中于现有方法在各种领域的应用,以及由当前对先进知识的兴趣所激发的新技术和新问题。该研究是研究者长期研究计划的关键一步,该计划旨在系统地开发新的高斯方法,以应用于密切相关的随机过程。这项研究有利于本科和研究生的教育和研究。许多未解决的问题和建议研究的结果可以用作学生的课程项目。它能激发学生学习和研究概率论的兴趣。这项研究将提高我们对重要随机事件的理解,并为研究我们的随机环境提供基本工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wenbo Li其他文献

A novel optimal accelerated degradation test design method considering multiple decision variables
一种考虑多决策变量的新型最优加速退化试验设计方法
  • DOI:
    10.1016/j.microrel.2021.114334
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Zhihua Wang;Gen Liu;Wenbo Li;Qiong Wu;Junxing Li;Chengrui Liu
  • 通讯作者:
    Chengrui Liu
Spontaneous resolution of bilateral central retinal vein occlusion with cystoid macular oedema during pregnancy
妊娠期双侧视网膜中央静脉阻塞伴黄斑囊样水肿自行消退
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Wenbo Li;Minwang Ma;Bojie Hu;Lijie Dong;Xiaorong Li
  • 通讯作者:
    Xiaorong Li
Design of Supplementary subsynchronous damping controller for HVDC transmission based on improved matrix beam algorithm and projective theorem
基于改进矩阵波束算法和射影定理的高压直流输电辅助次同步阻尼控制器设计
Accurate DOA Estimations using Compact Antenna Arrays in the Presence of Mutual Coupling Effect
在存在互耦效应的情况下使用紧凑型天线阵列进行准确的 DOA 估计
Structural and electronic properties of the transition layer at the SiO2/4H-SiC interface
SiO2/4H-SiC界面过渡层的结构和电子性质
  • DOI:
    10.1063/1.4906257
  • 发表时间:
    2015-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Wenbo Li;Jijun Zhao;Dejun Wang
  • 通讯作者:
    Dejun Wang

Wenbo Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wenbo Li', 18)}}的其他基金

AMC-SS Spatial models for populations with variable offspring laws
具有可变后代规律的种群的 AMC-SS 空间模型
  • 批准号:
    0706713
  • 财政年份:
    2007
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Gaussian Methods and Small Value Problems
高斯方法和小值问题
  • 批准号:
    0505805
  • 财政年份:
    2005
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Gaussian Methods and Probability Estimates of Rare Events
罕见事件的高斯方法和概率估计
  • 批准号:
    0204513
  • 财政年份:
    2002
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Small Ball Probabilities and Their Applications
小球概率及其应用
  • 批准号:
    9972012
  • 财政年份:
    1999
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9627494
  • 财政年份:
    1996
  • 资助金额:
    $ 16万
  • 项目类别:
    Fellowship Award
Mathematical Sciences: Gaussian Measures and Small Ball Probabilities
数学科学:高斯测度和小球概率
  • 批准号:
    9503458
  • 财政年份:
    1995
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant

相似国自然基金

基于时间序列间分位相依性(quantile dependence)的风险值(Value-at-Risk)预测模型研究
  • 批准号:
    71903144
  • 批准年份:
    2019
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Combining Machine Learning Explanation Methods with Expectancy-Value Theory to Identify Tailored Interventions for Engineering Student Persistence
将机器学习解释方法与期望值理论相结合,确定针对工程学生坚持的定制干预措施
  • 批准号:
    2335725
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Research on ESD learning theory for value transformation through knowledge construction
通过知识建构实现价值转化的ESD学习理论研究
  • 批准号:
    23K02483
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Constructing the New Rural Planning Theory based on Capability Development and Value Creation
构建基于能力发展和价值创造的新乡村规划理论
  • 批准号:
    22H00391
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Promoting Student Success through Expectancy-Value Theory-Informed Supports: Mentoring, Cohort-building, and Scholarships at a Community College
通过基于期望值理论的支持促进学生成功:社区学院的指导、队列建设和奖学金
  • 批准号:
    2130302
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Extreme Value Statistics in Probabilistic Number Theory
概率数论中的极值统计
  • 批准号:
    2153803
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Value-distribution theory of zeta and multiple zeta functions
zeta 和多重 zeta 函数的值分布理论
  • 批准号:
    22K03267
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New developments in the anticyclotomic Iwasawa theory and special value formulas on L-functions
反圆剖分Iwasawa理论和L函数特殊值公式的新进展
  • 批准号:
    22H00096
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Studies on extreme value theory for strongly correlated random fields
强相关随机场极值理论研究
  • 批准号:
    22K13927
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Approximation theory for two-level value functions with applications
两级值函数的逼近理论及其应用
  • 批准号:
    EP/V049038/1
  • 财政年份:
    2021
  • 资助金额:
    $ 16万
  • 项目类别:
    Research Grant
CAREER: Learning at the Edge: an Extreme Value Theory for Visual Recognition
职业:边缘学习:视觉识别的极值理论
  • 批准号:
    1942151
  • 财政年份:
    2020
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了