Saturn's Atmospheric Structure through Infrared Spectroscopy
通过红外光谱观察土星的大气结构
基本信息
- 批准号:0507558
- 负责人:
- 金额:$ 28.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-08-01 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AST 0507558ChanoverThe objective of Dr. Nancy Chanover's project is to study the balance between reflected solar radiation atSaturn's cloud decks and emitted thermal radiation from Saturn's interior. Using a technique of spatially resolved spectroscopy, this research team will obtain a unique data set that, when coupled with radiativetransfer and spectral synthesis modeling, will accomplish the following measurement objectives: a)determine the spatial and temporal variation of Saturn's cloud opacity, and b) determine the spatial and temporal variation of Saturn's chemical composition. These measurements will enhance our understanding of Saturn's atmospheric processes, including its dynamics, chemical composition, and radiative transfer.The medium- and high-resolution infrared spectrometers at the Infrared Telescope Facility 3.0 meter telescope will be used to acquire spectra of Saturn between 2.5-5.4 m, which is a wavelength region particularly sensitive to cloud opacity and scattering properties. Saturn's "cold spots," which may control the radiative transfer through Saturn's atmosphere in a manner analogous to Jupiter's 5-m "hot spots", will be studied as a function of latitude and slant path geometry. This will elucidate the detailed vertical structure of the atmosphere and the role of the cold, dark regions in controlling the thermal emission from the planet. The spatial and temporal variations of ammonia, phosphine, and ethane on Saturn will be examined as a means of understanding Saturn's atmospheric dynamics. Phosphine (PH3) is a disequilibrium species, thus any spatial variation in PH3 may be linked to variations in upwelling from the deep atmosphere, whereas variations in ammonia would be associated with spatial variations in cloud formation. Center-to-limb studies of ethane, a stratospheric molecule, will differ from those of ammonia, which is found in Saturn's troposphere. Ethane can be detected near 3 mm, and will provide an important constraint for understanding Saturn's atmospheric vertical structure. While Saturn's reflectivity variations as a function of latitude are more subtle than those of Jupiter, the dynamics driving the circulation of the two planets may be similar. Thus, a study of the latitudinal variation in Saturn's infrared spectrum is relevant to the understanding of the energy balance of Saturn's atmosphere. All data will be modeled using both center-to-limb analyses and spectral synthesis methods. With these two approaches, the goal is to develop a unified model of Saturn's atmospheric structure that places aerosol layers at the appropriate vertical levels, characterizes cloud and haze opacities and optical properties, derives mixing ratios for ammonia, phosphine, and ethane, and quantifies the temporal and spatial variations of the above quantities. This study will make unique contributions to our understanding of Saturn's atmosphere. By interpreting observations of Saturn's reflected and thermally emitted radiation using a self-consistent modeling approach, the team will develop a comprehensive description of the energy balance in Saturn'satmosphere. Prior studies will be improved by using an observational approach that can exploit the unique attributes of spatially-resolved spectroscopy. The observations will overlap the spectral coverage of Cassini's Visible and Infrared Mapping Spectrometer (VIMS), and will complement the high phase angle spacecraft data taken contemporaneously with the ground-based data. They will also probe deeper pressure levels than Cassini's Composite Infrared Spectrograph (CIRS), and therefore will provide an essential component of molecular mixing ratio studies.This work is interdisciplinary and promotes synergy between the analysis of reflected sunlight that has been conducted at New Mexico State University (NMSU) to date and the thermal infrared work in which the Co-Investigators are experts. This program will promote teaching and training through practical research by involving several NMSU students and giving them opportunities to participate in all aspects of the research. In addition, it will broaden the participation of women and ethnic minorities, both underrepresented demographics in science and engineering fields.***
Nancy Chanover博士项目的目标是研究土星云层反射的太阳辐射和土星内部发射的热辐射之间的平衡。利用空间分辨光谱技术,该研究小组将获得一个独特的数据集,当与辐射传输和光谱合成建模相结合时,将实现以下测量目标:a)确定土星云不透明度的空间和时间变化,以及B)确定土星化学成分的空间和时间变化。这些测量将增进我们对土星大气过程的了解,包括其动力学、化学成分和辐射传输,红外望远镜设施3.0米望远镜上的中分辨率和高分辨率红外光谱仪将用于获取土星2.5-5.4米之间的光谱,这是一个对云不透明度和散射特性特别敏感的波长区域。土星的“冷点”,这可能会控制通过土星大气层的辐射传输的方式类似于木星的5米“热点”,将作为纬度和倾斜路径几何的函数进行研究。这将阐明大气层的详细垂直结构以及寒冷黑暗区域在控制行星热辐射方面的作用。土星上氨、磷化氢和乙烷的空间和时间变化将作为了解土星大气动力学的一种手段进行研究。磷化氢(PH 3)是一种不平衡物质,因此PH 3的任何空间变化都可能与来自深层大气的上升流的变化有关,而氨的变化则与云形成的空间变化有关。对乙烷(一种平流层分子)的中心到边缘的研究将不同于在土星对流层中发现的氨。乙烷可以在3毫米附近被探测到,这将为了解土星的大气垂直结构提供重要的限制。虽然土星的反射率随纬度的变化比木星更为微妙,但驱动这两颗行星环流的动力学可能是相似的。因此,研究土星红外光谱的纬度变化与了解土星大气层的能量平衡有关。所有数据将使用中心到肢体分析和光谱合成方法进行建模。通过这两种方法,目标是开发一个土星大气结构的统一模型,将气溶胶层放置在适当的垂直高度,描述云和霾的不透明度和光学特性,推导出氨,磷化氢和乙烷的混合比,并量化上述数量的时间和空间变化。这项研究将为我们了解土星的大气层做出独特的贡献。通过使用自洽建模方法解释土星反射和热辐射的观测结果,该团队将开发土星大气层能量平衡的全面描述。先前的研究将通过使用观测方法来改进,该方法可以利用空间分辨光谱的独特属性。这些观测将与卡西尼号的可见光和红外测绘光谱仪(VIMS)的光谱覆盖范围重叠,并将补充与地面数据同时采集的高相位角航天器数据。他们还将探测比卡西尼号的复合红外光谱仪(CIRS)更深的压力水平,因此将为分子混合比研究提供一个重要组成部分。这项工作是跨学科的,促进了迄今为止在新墨西哥州州立大学(NMSU)进行的反射阳光分析与共同调查员是专家的热红外工作之间的协同作用。该计划将通过实践研究促进教学和培训,让几名NMSU学生参与,并让他们有机会参与研究的各个方面。此外,它将扩大妇女和少数民族的参与,这两个群体在科学和工程领域的代表性不足。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nancy Chanover其他文献
A supersolar oxygen abundance supported by hydrodynamic modelling of Jupiter’s atmosphere
木星大气流体动力学模型支持的超太阳氧丰度
- DOI:
10.1038/s41550-024-02420-7 - 发表时间:
2024-11-20 - 期刊:
- 影响因子:14.300
- 作者:
Ali Hyder;Cheng Li;Nancy Chanover;Gordon Bjoraker - 通讯作者:
Gordon Bjoraker
Nancy Chanover的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nancy Chanover', 18)}}的其他基金
Modeling Seasonal Variations in Ice Giant Atmospheres with Observational Constraints Including Solstice and Equinox
在夏至和春分等观测约束下模拟冰巨大气的季节变化
- 批准号:
0807989 - 财政年份:2008
- 资助金额:
$ 28.8万 - 项目类别:
Standard Grant
NSF/AFOSR Astronomy: Identifying the Coloring Agents in the Gas Giant Atmospheres
NSF/AFOSR 天文学:识别气态巨行星大气中的着色剂
- 批准号:
0628919 - 财政年份:2006
- 资助金额:
$ 28.8万 - 项目类别:
Standard Grant
NSF/AFOSR Astronomy: Spectral and Polarimetric Imaging of Solar System Bodies
NSF/AFOSR 天文学:太阳系天体的光谱和偏振成像
- 批准号:
0335635 - 财政年份:2003
- 资助金额:
$ 28.8万 - 项目类别:
Standard Grant
NSF/AFOSR Astronomy: High Spatial and Spectral Resolution Studies of Jupiter and Saturn
NSF/AFOSR 天文学:木星和土星的高空间和光谱分辨率研究
- 批准号:
0123443 - 财政年份:2001
- 资助金额:
$ 28.8万 - 项目类别:
Standard Grant
POWRE: Probing Titan's Surface With Acousto-Optic Imaging
POWRE:用声光成像探测泰坦的表面
- 批准号:
0074923 - 财政年份:2000
- 资助金额:
$ 28.8万 - 项目类别:
Standard Grant
相似海外基金
CAESAR: Characterizing and Understanding Atmospheric Boundary Layer Fluxes, Structure and Cloud Property Evolution in Arctic Cold Air Outbreaks
CAESAR:描述和理解北极冷空气爆发时的大气边界层通量、结构和云特性演化
- 批准号:
2151075 - 财政年份:2023
- 资助金额:
$ 28.8万 - 项目类别:
Continuing Grant
A theory for the vertical structure of tropical atmospheric circulations
热带大气环流垂直结构理论
- 批准号:
DP230102077 - 财政年份:2023
- 资助金额:
$ 28.8万 - 项目类别:
Discovery Projects
Microporous structure tuning and ultrathin film formation via atmospheric-pressure plasma-enhanced CVD for the development of highly permselective silica membranes
通过大气压等离子体增强 CVD 进行微孔结构调整和超薄膜形成,用于开发高选择性渗透二氧化硅膜
- 批准号:
22H01851 - 财政年份:2022
- 资助金额:
$ 28.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The effect of multi-scale roughness on the structure of atmospheric turbulence
多尺度粗糙度对大气湍流结构的影响
- 批准号:
2599942 - 财政年份:2021
- 资助金额:
$ 28.8万 - 项目类别:
Studentship
The search for novel trace gases in the atmosphere of Mars, and measurement of their abundances and vertical structure, using the ExoMars Trace Gas Orbiter Atmospheric Chemistry Suite.
使用 ExoMars 痕量气体轨道器大气化学套件在火星大气中寻找新型痕量气体,并测量其丰度和垂直结构。
- 批准号:
516895-2018 - 财政年份:2019
- 资助金额:
$ 28.8万 - 项目类别:
Postdoctoral Fellowships
Doctoral Dissertation Research: Spatial Structure of Turbulent Flows in the Atmospheric Boundary Layer
博士论文研究:大气边界层湍流的空间结构
- 批准号:
1842715 - 财政年份:2019
- 资助金额:
$ 28.8万 - 项目类别:
Standard Grant
The search for novel trace gases in the atmosphere of Mars, and measurement of their abundances and vertical structure, using the ExoMars Trace Gas Orbiter Atmospheric Chemistry Suite.
使用 ExoMars 痕量气体轨道器大气化学套件在火星大气中寻找新型痕量气体,并测量其丰度和垂直结构。
- 批准号:
516895-2018 - 财政年份:2018
- 资助金额:
$ 28.8万 - 项目类别:
Postdoctoral Fellowships
Effect of Molecular Structure on the Atmospheric Oxidation of Organic Compounds and Aerosol Formation
分子结构对有机化合物大气氧化和气溶胶形成的影响
- 批准号:
1750447 - 财政年份:2018
- 资助金额:
$ 28.8万 - 项目类别:
Standard Grant
Study of surface structure and catalytic activity of noble metals under atmospheric pressure
常压下贵金属表面结构及催化活性研究
- 批准号:
18H01880 - 财政年份:2018
- 资助金额:
$ 28.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Structure Preserving Numerical Methods for Hyperbolic Balance Laws with Applications to Shallow Water and Atmospheric Models
合作研究:双曲平衡定律的结构保持数值方法及其在浅水和大气模型中的应用
- 批准号:
1818666 - 财政年份:2018
- 资助金额:
$ 28.8万 - 项目类别:
Standard Grant