Collaborative Research: Structure Preserving Numerical Methods for Hyperbolic Balance Laws with Applications to Shallow Water and Atmospheric Models
合作研究:双曲平衡定律的结构保持数值方法及其在浅水和大气模型中的应用
基本信息
- 批准号:1818666
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will significantly contribute toward development of computational methods for shallow water and related models and will provide considerably more powerful tools for studying a variety of water waves and atmospheric phenomena. Special attention will be paid to applications arising in oceanography, atmospheric sciences, hydraulic, coastal, civil engineering, in which rapid changes in the bottom topography, Coriolis forces, friction, multiscale regimes, and uncertain phenomena factor heavily. The studied problems will include shallow water flows in multi-connected river channel systems, tsunami wave propagation and low Froude regime shallow water models, dynamics models of tropical cyclones and clouds with uncertain data.The newly developed tools may have a great potential in designing coastal protection systems and investigating the effects of sediment transport on shelf drilling platforms as well as contributing to a better prediction of tropical cyclones trajectories and tsunami wave propagation and on-shore arrival.The project focuses on development of new structure preserving numerical methods for hyperbolic balance laws with applications to shallow water equations and related models. Shallow water models are systems of time-dependent partial differential equations (PDEs) that are derived using physical properties such as conservation of mass and momentum, and hydrostatic or barotropic approximations. Naturally, these applications, especially in cases of high space dimensions, require development and implementation of special numerical methods that are not only consistent with the governing system of PDEs, but also preserve certain structural and asymptotic properties of the underlying problem at the discrete level. The development of new numerical techniques will be based on high-order shock-capturing finite-volume schemes, asymptotic preserving, adaptive moving mesh and stochastic Galerkin methods utilizing major advantages of each one of these methods in the context of studied problems. Besides providing examples that corroborate the numerical approach, the foregoing applications are of a substantial independent value for a broad class of problems arising in today's science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将为浅水和相关模型的计算方法的发展做出重大贡献,并将为研究各种水波和大气现象提供更强大的工具。将特别注意在海洋学,大气科学,水力,海岸,土木工程,其中在海底地形,科里奥利力,摩擦,多尺度制度,和不确定的现象的因素严重的快速变化所产生的应用。研究的问题将包括多连通河道系统中的浅水流动、海啸波传播和低弗劳德状态浅水模型,新开发的工具可能在设计海岸保护系统和调查沉积物输运对陆架钻井平台的影响方面具有很大的潜力,并有助于更好地预测热带气旋和云的动力学模型。该项目的重点是为双曲线平衡律开发新的结构保持数值方法,并将其应用于浅水方程和相关模型。浅水模式是一组时间相关的偏微分方程(PDE),这些偏微分方程是利用诸如质量和动量守恒、流体静力学或正压近似等物理性质推导出来的。自然,这些应用,特别是在高空间维度的情况下,需要开发和实施特殊的数值方法,不仅与偏微分方程的管理系统相一致,但也保持一定的结构和渐近性质的基本问题在离散水平。新的数值技术的发展将基于高阶激波捕捉有限体积法,渐近保持,自适应移动网格和随机Galerkin方法,利用这些方法中的每一个的主要优势,在研究的问题。除了提供证实数值方法的例子外,上述应用对当今科学中出现的广泛问题具有实质性的独立价值。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Kurganov其他文献
Flux globalization-based well-balanced path-conservative central-upwind scheme for two-dimensional two-layer thermal rotating shallow water equations
- DOI:
10.1016/j.jcp.2024.113273 - 发表时间:
2024-10-15 - 期刊:
- 影响因子:
- 作者:
Yangyang Cao;Alexander Kurganov;Yongle Liu;Vladimir Zeitlin - 通讯作者:
Vladimir Zeitlin
Locally divergence-free well-balanced path-conservative central-upwind schemes for rotating shallow water MHD
- DOI:
10.1016/j.jcp.2024.113300 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Alina Chertock;Alexander Kurganov;Michael Redle;Vladimir Zeitlin - 通讯作者:
Vladimir Zeitlin
Numerical study of the non-conservative NET-RAT traffic flow model by path-conservative central-upwind schemesspan class="inline-figure"img src="//ars.els-cdn.com/content/image/1-s2.0-S0898122124005613-fx001.jpg" width="17" height="19" //span
基于路径守恒中心迎风格式的非守恒 NET-RAT 交通流模型的数值研究
- DOI:
10.1016/j.camwa.2024.12.014 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:2.500
- 作者:
Saeed Mohammadian;Zuduo Zheng;Shaoshuai Chu;Alexander Kurganov - 通讯作者:
Alexander Kurganov
Stochastic Galerkin method for cloud simulation
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
A. Chertock;Alexander Kurganov;M. Lukáčová-Medviďová;P. Spichtinger;B. Wiebe - 通讯作者:
B. Wiebe
Bound- and Positivity-Preserving Path-Conservative Central-Upwind AWENO Scheme for the Five-Equation Model of Compressible Two-Component Flows
- DOI:
10.1007/s10915-025-03003-y - 发表时间:
2025-07-29 - 期刊:
- 影响因子:3.300
- 作者:
Qingcheng Fu;Yaguang Gu;Alexander Kurganov;Bao-Shan Wang - 通讯作者:
Bao-Shan Wang
Alexander Kurganov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Kurganov', 18)}}的其他基金
Collaborative Research: Numerical Methods for Partial Differential Equations Arising in Shallow Water Modeling
合作研究:浅水模拟中出现的偏微分方程的数值方法
- 批准号:
1521009 - 财政年份:2015
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Collaborative Research: Numerical methods for Shallow Water Equations and Related Models
合作研究:浅水方程及相关模型的数值方法
- 批准号:
1216957 - 财政年份:2012
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: Development of High-Resolution Finite-Volume Methods for Systems of Nonlinear Time-Dependent PDEs
合作研究:非线性时变偏微分方程组高分辨率有限体积方法的开发
- 批准号:
1115718 - 财政年份:2011
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Development of Robust, Efficient and Highly Accurate Numerical Methods Based on Godunov-Type Central Schemes
基于Godunov型中心方案的鲁棒、高效和高精度数值方法的开发
- 批准号:
0610430 - 财政年份:2006
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Godunov-Type Central Schemes for Hyperbolic Problems: Further Development, Adaptation, and Applications
双曲问题的 Godunov 型中心方案:进一步发展、适应和应用
- 批准号:
0310585 - 财政年份:2003
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
New High-Resolution Semi-Discrete Central Schemes: Derivation, Applications and Local Error Analysis
新的高分辨率半离散中心方案:推导、应用和局部误差分析
- 批准号:
0196439 - 财政年份:2001
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
New High-Resolution Semi-Discrete Central Schemes: Derivation, Applications and Local Error Analysis
新的高分辨率半离散中心方案:推导、应用和局部误差分析
- 批准号:
0073631 - 财政年份:2000
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: The influence of incoming plate structure and fluids on arc melt generation at the Lesser Antilles subduction system
合作研究:来料板结构和流体对小安的列斯群岛俯冲系统电弧熔化产生的影响
- 批准号:
2316136 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Collaborative Research: The influence of incoming plate structure and fluids on arc melt generation at the Lesser Antilles subduction system
合作研究:来料板结构和流体对小安的列斯群岛俯冲系统电弧熔化产生的影响
- 批准号:
2316137 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400352 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400353 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309547 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: Assembling the foundation of modern mammal community structure in the first 7 million years after the K/Pg mass extinction
合作研究:为 K/Pg 大规模灭绝后的前 700 万年建立现代哺乳动物群落结构的基础
- 批准号:
2321344 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: Molecular and Nanoscale Structure and Interactions of PFAS at Interfaces and Mixed Surfactant Systems
合作研究:PFAS 的分子和纳米结构以及界面和混合表面活性剂体系的相互作用
- 批准号:
2227128 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: Reducing Model Uncertainty by Improving Understanding of Pacific Meridional Climate Structure during Past Warm Intervals
合作研究:通过提高对过去温暖时期太平洋经向气候结构的理解来降低模型不确定性
- 批准号:
2303568 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Collaborative Research: Structure and function: How microenvironment facilitates antimicrobial response to environmental stress in a defensive symbiosis
合作研究:结构和功能:微环境如何促进防御性共生中的抗菌剂对环境应激的反应
- 批准号:
2247195 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: RUI: The challenges of living small: functional tradeoffs in the vertebral bone structure of diminutive mammals
合作研究:RUI:小型生活的挑战:小型哺乳动物椎骨结构的功能权衡
- 批准号:
2223964 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant