Spatial Inference with Application to Astronomy

空间推理及其在天文学中的应用

基本信息

  • 批准号:
    0507687
  • 负责人:
  • 金额:
    $ 15.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2010-06-30
  • 项目状态:
    已结题

项目摘要

AST-0507687LohAstronomers study large-scale structure, usually with second-order statistics of clustering, in order to understand the Universe and its evolution. To get error estimates, bootstrap is often used. This project will extend recently developed methods that dramatically reduce standard errors by considering the dependence of absorbers across different radial lines of observation, and will apply these techniques to a new larger dataset. The research work will also compare different measures of second-order structure in spatial point processes, and study methods of resampling spatial data. Extending the method to variable size absorbers, chemical element differences, and third-order characteristics, should provide clustering estimates of unprecedented precision. Analysis of surveys and simulations using various estimators should improve understanding of the procedures, and provide recommendations of appropriate measures for different situations. Resampling spatial processes is complicated and computationally intensive, and a new faster method will be tested on real data and simulations using both simple regions and more realistic, more complex regions. This work will advance statistical understanding of both theoretical and applied issues involved in estimating clustering and resampling spatial data.All of these results will be important for applied statistical work in many fields, and will be disseminated as widely as possible to the statistics and astronomy communities. The research also involves significant interdisciplinary collaboration and training, including members of under-represented groups.
AST-0507687 Loh天文学家研究大尺度结构,通常使用聚类的二阶统计,以了解宇宙及其演化。 为了得到误差估计,通常使用Bootstrap。 该项目将扩展最近开发的方法,通过考虑吸收体在不同径向观测线上的依赖性,大大降低标准误差,并将这些技术应用于一个新的更大的数据集。 研究工作还将比较空间点过程中二阶结构的不同度量,并研究空间数据的恢复方法。 将该方法扩展到可变尺寸吸收体、化学元素差异和三阶特性,应提供前所未有的精度的聚类估计。 使用各种估算方法对调查和模拟进行分析,应能增进对程序的理解,并就不同情况下的适当措施提出建议。 恢复空间过程是复杂的和计算密集型的,将使用简单区域和更真实、更复杂的区域在真实的数据和模拟上测试一种新的更快的方法。 这项工作将促进对估计聚类和重新排列空间数据所涉理论和应用问题的统计理解,所有这些结果对许多领域的应用统计工作都很重要,并将尽可能广泛地向统计和天文学界传播。 研究还涉及重要的跨学科合作和培训,包括代表性不足的群体的成员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ji Meng Loh其他文献

Spatial Sampling Design Using Generalized Neyman–Scott Process
Erratum to: Safety and efficacy of a 100 % dimethicone pediculocide in school-age children
  • DOI:
    10.1186/s12887-016-0547-4
  • 发表时间:
    2016-01-21
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Erin Speiser Ihde;Jeffrey R. Boscamp;Ji Meng Loh;Lawrence Rosen
  • 通讯作者:
    Lawrence Rosen
Erratum to: Association of environmental chemicals & estrogen metabolites in children
  • DOI:
    10.1186/s12902-016-0085-y
  • 发表时间:
    2016-01-27
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Erin Speiser Ihde;Ji Meng Loh;Lawrence Rosen
  • 通讯作者:
    Lawrence Rosen

Ji Meng Loh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
  • 批准号:
    10642607
  • 财政年份:
    2023
  • 资助金额:
    $ 15.57万
  • 项目类别:
Development of High-Precision Geospatial Information Utilization Methods in Urban and Regional Economic Analysis and Their Application to Spatial Causal Inference
城市和区域经济分析中高精度地理空间信息利用方法的发展及其在空间因果推理中的应用
  • 批准号:
    23K17559
  • 财政年份:
    2023
  • 资助金额:
    $ 15.57万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Bayesian inference in complex risk assessment with application to health hazards from abiotic toxin exposure
复杂风险评估中的贝叶斯推理及其应用于非生物毒素暴露造成的健康危害
  • 批准号:
    2902031
  • 财政年份:
    2023
  • 资助金额:
    $ 15.57万
  • 项目类别:
    Studentship
Developing Conjugate Models for Exact MCMC free Bayesian Inference with Application to High-Dimensional Spatio-Temporal Data
开发用于精确 MCMC 免费贝叶斯推理的共轭模型并应用于高维时空数据
  • 批准号:
    2310756
  • 财政年份:
    2023
  • 资助金额:
    $ 15.57万
  • 项目类别:
    Standard Grant
Improvement of nonparametric inference based on kernel type estimation and resampling method, and its application
基于核类型估计和重采样方法的非参数推理改进及其应用
  • 批准号:
    22K11939
  • 财政年份:
    2022
  • 资助金额:
    $ 15.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Simulation-based multiple inference problems: theory and application
基于仿真的多重推理问题:理论与应用
  • 批准号:
    RGPIN-2019-06114
  • 财政年份:
    2022
  • 资助金额:
    $ 15.57万
  • 项目类别:
    Discovery Grants Program - Individual
Semi- and non-parametric inference for multivariate data: theory and application
多元数据的半参数和非参数推理:理论与应用
  • 批准号:
    RGPIN-2020-05496
  • 财政年份:
    2022
  • 资助金额:
    $ 15.57万
  • 项目类别:
    Discovery Grants Program - Individual
Semi- and non-parametric inference for multivariate data: theory and application
多元数据的半参数和非参数推理:理论与应用
  • 批准号:
    RGPIN-2020-05496
  • 财政年份:
    2021
  • 资助金额:
    $ 15.57万
  • 项目类别:
    Discovery Grants Program - Individual
Simulation-based multiple inference problems: theory and application
基于仿真的多重推理问题:理论与应用
  • 批准号:
    RGPIN-2019-06114
  • 财政年份:
    2021
  • 资助金额:
    $ 15.57万
  • 项目类别:
    Discovery Grants Program - Individual
Application of graph modularity inference to represent protein structures.
应用图模块化推理来表示蛋白质结构。
  • 批准号:
    RGPIN-2016-05414
  • 财政年份:
    2021
  • 资助金额:
    $ 15.57万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了