RUI: Classical and Quantum Ratchets in Josephson Arrays

RUI:约瑟夫森阵列中的经典和量子棘轮

基本信息

  • 批准号:
    0509450
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-15 至 2008-11-30
  • 项目状态:
    已结题

项目摘要

*** NON-TECHNICAL ABSTRACT ***Noise and randomness in nature are not always undesirable. In recent years it has been learned that many physical systems have the capability to use noise and randomness to their advantage. Such a system is called a ratchet, indicating a system that only moves in one direction regardless of which direction it is pushed. An everyday example of a ratchet is a windmill, where regardless of which way the wind blows, net positive energy is produced. Ratchets can be realized in many different chemical, biological, optical and electronic systems. The open questions that exist relate to how much net motion is produced for different amounts and different types of noise. Scientists seek out different systems to try to quantify the answers to these questions. This Research at an Undergraduate Institution (RUI) award supports studies of the ratchet effect in a superconducting circuit. Lithographic techniques, similar to the ones used in the computer industry, can be used to fabricate tiny microscopic circuits made of superconducting metals. When these circuits are cooled to ultra-low temperatures, small bits of magnetic field called "fluxons" can be trapped inside them. If the circuit layout has been designed correctly, these fluxons will only be able to move in one direction, thus exhibiting ratchet behavior. Studying the ratchet effect in a superconducting circuit is advantageous because many different circuit architectures can be engineered, each one operating slightly different than the next. By measuring many such circuits, one can work toward more general ideas about how ratchets work. The broader impact of this research includes the training of undergraduate physics majors, who will be involved with much of the proposed studies. **** TECHNICAL ABSTRACT ****This Research at an Undergraduate Institution (RUI) award supports an experimental study of the Ratchet Effect in arrays of superconducting Josephson junctions. The Ratchet Effect characterizes physical systems in which random noise and fluctuations can cause motion in a preferred direction. A physical system where the Ratchet Effect can be realized is an array of superconducting Josephson junctions, where applied electrical current can shuttle quanta of magnetic flux called fluxons. The motion of these fluxons can be ascertained by measuring voltages in the array. A series of low temperature measurements will be performed on previously fabricated Josephson arrays which have been designed to display the Ratchet Effect. Of particular interest is how different types of fluctuations in the arrays cause different types of ratchet behavior. Classical thermal fluctuations, always present in varying degrees, cause the so-called rocking ratchet effect. At low enough temperatures and dissipation, quantum fluctuations can cause additional transport; this is known as the quantum ratchet effect. Finally, types of 1/f fluctuations often present in Josephson junctions manifest themselves in yet another way, in a kind of ratchet known as a flashing ratchet. Many of these effects have not yet been observed, and this research aims to shed more light on these issues. The broader impact of this work includes the training of undergraduate physics majors, who will perform much of the proposed research.
***自然界中的噪音和随机性并不总是不受欢迎的。近年来,人们已经了解到许多物理系统具有利用噪声和随机性的能力。这样的系统被称为棘轮,表明系统只在一个方向上运动,而不管它被推向哪个方向。棘轮的一个日常例子是风车,不管风朝哪个方向吹,都能产生净正能量。棘轮可以在许多不同的化学、生物、光学和电子系统中实现。存在的悬而未决的问题与不同数量和不同类型的噪音产生多少净运动有关。科学家们寻找不同的系统来试图量化这些问题的答案。这项本科院校研究(RUI)奖支持对超导电路中棘轮效应的研究。光刻技术,类似于计算机工业中使用的技术,可以用来制造由超导金属制成的微型电路。当这些电路冷却到超低温时,被称为“通量子”的小磁场就会被困在其中。如果电路布局设计正确,这些通量子将只能在一个方向上移动,从而表现出棘轮行为。研究超导电路中的棘轮效应是有利的,因为可以设计许多不同的电路结构,每个电路的工作原理都与下一个略有不同。通过测量许多这样的电路,人们可以对棘轮的工作原理有更一般的了解。这项研究更广泛的影响包括训练物理专业的本科生,他们将参与许多拟议的研究。****技术摘要****本研究在一个本科机构(RUI)奖支持在超导约瑟夫森结阵列棘轮效应的实验研究。棘轮效应描述的是随机噪声和波动能导致运动朝偏好方向运动的物理系统。一个可以实现棘轮效应的物理系统是一组超导约瑟夫森结,在那里施加的电流可以穿梭被称为通量子的磁通量量子。这些通量子的运动可以通过测量阵列中的电压来确定。一系列低温测量将在先前制造的约瑟夫森阵列上进行,该阵列设计用于显示棘轮效应。特别有趣的是阵列中不同类型的波动如何导致不同类型的棘轮行为。经典的热波动,总是以不同的程度存在,导致所谓的摇摆棘轮效应。在足够低的温度和耗散下,量子涨落会导致额外的输运;这就是所谓的量子棘轮效应。最后,约瑟夫森结中经常出现的1/f波动类型还以另一种方式表现出来,即一种被称为闪烁棘轮的棘轮。这些影响中有许多尚未被观察到,而这项研究旨在为这些问题提供更多的线索。这项工作的更广泛的影响包括训练物理专业的本科生,他们将执行大部分拟议的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenneth Segall其他文献

Thermal depinning of fluxons in ratchet discrete Josephson rings
  • DOI:
    10.1140/epjb/e2015-60381-1
  • 发表时间:
    2015-07-15
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Fernando Naranjo;Kenneth Segall;Juan José Mazo
  • 通讯作者:
    Juan José Mazo
Modeling biological neurons with Josephson junctions
  • DOI:
    10.1186/1471-2202-10-s1-p44
  • 发表时间:
    2009-07-13
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Patrick Crotty;Kenneth Segall;Daniel A Schult
  • 通讯作者:
    Daniel A Schult

Kenneth Segall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenneth Segall', 18)}}的其他基金

RUI: Nonlinear and Neural Dynamics in Josephson Networks
RUI:约瑟夫森网络中的非线性和神经动力学
  • 批准号:
    1105444
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
RUI: Classical and Quantum Ratchets in Josephson Arrays
RUI:约瑟夫森阵列中的经典和量子棘轮
  • 批准号:
    0804865
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Foundations of Classical and Quantum Verifiable Computing
经典和量子可验证计算的基础
  • 批准号:
    MR/X023583/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Mixed Quantum-Classical Semiclassical Theory: Finding Reaction Paths in Open Quantum Systems
混合量子经典半经典理论:寻找开放量子系统中的反应路径
  • 批准号:
    2404809
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Understanding Emission, Absorption and Energy Transfer Involving Classical and Quantum Light Interacting with Molecules
了解涉及经典光和量子光与分子相互作用的发射、吸收和能量转移
  • 批准号:
    2347622
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collective Quantum Thermodynamics: Quantum vs Classical
集体量子热力学:量子与经典
  • 批准号:
    MR/Y003845/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336135
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FET: SHF: Small: A Verification Framework for Hybrid Classical and Quantum Protocols (VeriHCQ)
FET:SHF:小型:混合经典和量子协议的验证框架 (VeriHCQ)
  • 批准号:
    2330974
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336136
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: From Quantum to Classical and Back: Bringing 2D Spectroscopy Insights into Focus
职业生涯:从量子到经典再回归:聚焦二维光谱学见解
  • 批准号:
    2236625
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ERI: Harnessing Quantum-Classical Computing with a Cloud-Edge Framework for Cyber-Physical Systems
ERI:利用量子经典计算与网络物理系统的云边缘框架
  • 批准号:
    2301884
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了