RUI: Classical and Quantum Ratchets in Josephson Arrays

RUI:约瑟夫森阵列中的经典和量子棘轮

基本信息

  • 批准号:
    0804865
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

*****NON-TECHNICAL ABSTRACT*****Noise and randomness in nature are not always undesirable. In recent years it has been learned that many physical systems have the capability to use noise and randomness to their advantage. Such a system is called a ratchet, indicating a system that only moves in one direction regardless of which direction it is pushed. An everyday example of a ratchet is a windmill, where regardless of which way the wind blows, net positive energy is produced. Ratchets can be realized in many different chemical, biological, optical and electronic systems. The open questions that exist relate to how much net motion is produced for different amounts and different types of noise. Scientists seek out different systems to try to quantify the answers to these questions. In this research, the ratchet effect is being studied in a superconducting circuit. Lithographic techniques, similar to ones used in the computer industry, can be used to fabricate tiny microscopic circuits made of superconducting metals. When these circuits are cooled to ultra-low temperatures, small bits of magnetic field called ?fluxons? can be trapped inside them. If the circuit layout has been designed correctly, these fluxons will be able to move in only one direction, thus exhibiting ratchet behavior. Studying the ratchet effect in a superconducting circuit is advantageous because many different circuit architectures can be engineered, each one operating slightly differently from the next. By measuring many such circuits, one can work toward more general ideas about how ratchets work. The broader impact of this research includes the training of undergraduate physics majors, who will be involved with much of the proposed studies. *****TECHNICAL ABSTRACT*****This individual investigator award supports an experimental study of the Ratchet Effect in arrays of superconducting Josephson junctions. The Ratchet Effect characterizes physical systems in which random noise and fluctuations can cause motion in a preferred direction. A physical system where the Ratchet Effect can be realized is an array of superconducting Josephson junctions, where applied electrical current can shuttle quanta of magnetic flux called fluxons. The motion of these fluxons can be ascertained by so-called switching current measurements, where the current-voltage characteristics are measured multiple times under the same conditions. Of particular interest are the different modes of transport for fluxons to ?depin? and move through the array. At low temperatures, the fluxon is expected to depin via quantum tunneling, although that has yet to be observed. At moderate temperatures the fluxon depins via thermal activation, characterized by Kramers? law type of behavior. At higher temperatures the fluxon can retrap again after being thermally activated, and move through in a series of depinning and retrapping events; this is known as fluxon diffusion. Our main objective is to observe these three domains and identify the ?crossover? regions in temperature. The broader impact of this work includes the training of undergraduate physics majors, who will perform much of the proposed research.
*****非技术性摘要*****本质上的噪声和随机性并不总是令人讨厌的。 近年来,人们了解到许多物理系统都有能力利用噪声和随机性来发挥其优势。 这样的系统称为棘轮,表示无论向哪个方向推动,都只沿一个方向移动的系统。 棘轮的日常例子是风车,无论风向哪个方向吹,都会产生净正能量。 棘轮可以在许多不同的化学、生物、光学和电子系统中实现。 存在的悬而未决的问题涉及不同量和不同类型的噪声产生多少净运动。 科学家们寻找不同的系统来尝试量化这些问题的答案。 在这项研究中,正在研究超导电路中的棘轮效应。 光刻技术与计算机行业中使用的技术类似,可用于制造由超导金属制成的微小电路。 当这些电路冷却到超低温时,会产生称为“通量子”的小磁场。可能会被困在其中。 如果电路布局设计正确,这些磁通子将只能沿一个方向移动,从而表现出棘轮行为。 研究超导电路中的棘轮效应是有利的,因为可以设计许多不同的电路架构,每种架构的运行方式都略有不同。 通过测量许多这样的电路,人们可以对棘轮的工作原理产生更普遍的想法。 这项研究的更广泛影响包括对物理学专业本科生的培训,他们将参与大部分拟议的研究。 *****技术摘要*****该个人研究员奖支持超导约瑟夫森结阵列中棘轮效应的实验研究。 棘轮效应的特征是随机噪声和波动会导致沿首选方向运动的物理系统。 可以实现棘轮效应的物理系统是超导约瑟夫森结阵列,其中施加的电流可以穿梭称为磁通子的磁通量量子。 这些磁通子的运动可以通过所谓的开关电流测量来确定,其中在相同条件下多次测量电流-电压特性。 特别令人感兴趣的是通量子到“depin”的不同运输方式。并在数组中移动。 在低温下,通量子预计会通过量子隧道效应脱钉,尽管这还有待观察到。 在中等温度下,通量子通过热激活脱钉,其特征为克莱默斯?法律类型的行为。 在较高温度下,磁通子在被热激活后可以再次重新捕获,并通过一系列脱钉和重新捕获事件进行移动;这称为通量扩散。 我们的主要目标是观察这三个领域并确定“交叉”。温度区域。 这项工作更广泛的影响包括对物理专业本科生的培训,他们将进行大部分拟议的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenneth Segall其他文献

Thermal depinning of fluxons in ratchet discrete Josephson rings
  • DOI:
    10.1140/epjb/e2015-60381-1
  • 发表时间:
    2015-07-15
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Fernando Naranjo;Kenneth Segall;Juan José Mazo
  • 通讯作者:
    Juan José Mazo
Modeling biological neurons with Josephson junctions
  • DOI:
    10.1186/1471-2202-10-s1-p44
  • 发表时间:
    2009-07-13
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Patrick Crotty;Kenneth Segall;Daniel A Schult
  • 通讯作者:
    Daniel A Schult

Kenneth Segall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenneth Segall', 18)}}的其他基金

RUI: Nonlinear and Neural Dynamics in Josephson Networks
RUI:约瑟夫森网络中的非线性和神经动力学
  • 批准号:
    1105444
  • 财政年份:
    2011
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
RUI: Classical and Quantum Ratchets in Josephson Arrays
RUI:约瑟夫森阵列中的经典和量子棘轮
  • 批准号:
    0509450
  • 财政年份:
    2005
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似海外基金

Mixed Quantum-Classical Semiclassical Theory: Finding Reaction Paths in Open Quantum Systems
混合量子经典半经典理论:寻找开放量子系统中的反应路径
  • 批准号:
    2404809
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Understanding Emission, Absorption and Energy Transfer Involving Classical and Quantum Light Interacting with Molecules
了解涉及经典光和量子光与分子相互作用的发射、吸收和能量转移
  • 批准号:
    2347622
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Foundations of Classical and Quantum Verifiable Computing
经典和量子可验证计算的基础
  • 批准号:
    MR/X023583/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Fellowship
Collective Quantum Thermodynamics: Quantum vs Classical
集体量子热力学:量子与经典
  • 批准号:
    MR/Y003845/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Fellowship
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336135
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
FET: SHF: Small: A Verification Framework for Hybrid Classical and Quantum Protocols (VeriHCQ)
FET:SHF:小型:混合经典和量子协议的验证框架 (VeriHCQ)
  • 批准号:
    2330974
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336136
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CAREER: From Quantum to Classical and Back: Bringing 2D Spectroscopy Insights into Focus
职业生涯:从量子到经典再回归:聚焦二维光谱学见解
  • 批准号:
    2236625
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
ERI: Harnessing Quantum-Classical Computing with a Cloud-Edge Framework for Cyber-Physical Systems
ERI:利用量子经典计算与网络物理系统的云边缘框架
  • 批准号:
    2301884
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了