High-Order Numerical Simulation of Focusing Nonlinear Waves in the Non-Paraxial Regime
非近轴区域聚焦非线性波的高阶数值模拟
基本信息
- 批准号:0509695
- 负责人:
- 金额:$ 10.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The key objective of the project is to build a quantitative predictive capability for the focusing nonlinear electromagnetic waves. A standard mathematical model for describing this type of problems is the nonlinear Schroedinger equation (NLS). By now, this equation is relatively well studied. There are, however, indications that the NLS model may be oversimplified. An alternative is provided by a more comprehensive nonlinear Helmholtz equation (NLH), from which the NLS is, in fact, derived by employing the so-called paraxial approximation and neglecting the important phenomenon of backscattering. In contradistinction to the NLS, relatively little is known about the solvability of the NLH and uniqueness of its solutions.Moreover, this equation presents a considerable challenge for the numerical approachas well. Nonlinearity is a major hurdle, as it implies that the impinging and(back)scattered waves cannot be separated. Another key difficulty is the small magnitude of backscattering compared to that of the forward propagating wave.In the course of the project, the PI and his colleagues will develop, implement,and test an efficient numerical procedure for integrating the NLH. It will involvemajor modifications and improvements to the previously proposed methodology thathas already proven successful and, in fact, unparalled in the literature. The methodology employs a high-order finite-difference approximation. Its central element is a special two-way nonlocal artificial boundary condition that makes the outer boundary transparent for all the outgoing waves and at the same time is capable of accurately prescribing the given impinging signal. It is expected that with the help of this methodology, a valuable new insight will be gained into a number of key outstanding questions in nonlinear optics, in particular, whether the nonparaxiality and backscattering may arrest the collapse (blow-up) of focusing nonlinear waves, and whether the NLH is capable of sustaining the so-called narrow spatial solitons, with the width on the order of only several wavelengths.In the course of the project, a numerical methodology will be built to simulate thepropagation of intense laser light through a variety of media and materials. This methodology has a solid mathematical foundation, and is expected to help addressa number of challenging issues in the theoretical nonlinear optics. In additionto its potential theoretical merits, the methodology will be useful from the standpoint of applications as well. Indeed, the propagation of laser beams in materials is typically accompanied by the phenomena of nonlinear self-focusing and backscattering. The capability to quantitatively analyze and predict these key phenomena is extremely important for many of applications in modern science and engineering. The latter range from remote atmosphere sensing (when an earth-based powerful laser sends pulses to the sky, and backscattered radiation accounts for a substantial part of the detected signal), to laser surgery (propagation of laser beams in tissues), to transmitting information along optical fibers. There are other possible applications that involve, e.g., interactions between the co-propagating or counter-propagating laser beams. They may provide a vehicle for designing the so-called all-optical switches for the next generation of opto-electronic circuits. The proposed numerical methodology will yield a powerful tool for the accurate and robust analysis of the foregoing applications, along with many others.
该项目的主要目标是建立聚焦非线性电磁波的定量预测能力。描述此类问题的标准数学模型是非线性薛定谔方程(NLS)。到目前为止,这个方程已经得到了比较充分的研究。然而,有迹象表明 NLS 模型可能过于简化。更全面的非线性亥姆霍兹方程 (NLH) 提供了一种替代方案,实际上,NLS 是通过采用所谓的近轴近似并忽略重要的后向散射现象而导出的。与 NLS 相比,人们对 NLH 的可解性及其解的唯一性知之甚少。此外,该方程也对数值方法提出了相当大的挑战。非线性是一个主要障碍,因为它意味着无法将撞击波和(反向)散射波分开。另一个关键困难是与前向传播波相比,后向散射的幅度较小。在项目过程中,PI 和他的同事将开发、实施和测试一种用于集成 NLH 的有效数值程序。它将涉及对先前提出的方法进行重大修改和改进,该方法已被证明是成功的,实际上在文献中是无与伦比的。该方法采用高阶有限差分近似。其中心元件是一种特殊的双向非局部人工边界条件,使外边界对所有出射波都是透明的,同时能够准确地规定给定的撞击信号。预计在这种方法的帮助下,将对非线性光学中的一些关键的悬而未决的问题获得有价值的新见解,特别是非近轴性和后向散射是否可以阻止聚焦非线性波的崩溃(爆炸),以及NLH是否能够维持所谓的窄空间孤子,其宽度仅为几个波长的量级。 将建立方法来模拟强激光通过各种介质和材料的传播。该方法具有坚实的数学基础,有望帮助解决理论非线性光学中的许多具有挑战性的问题。除了潜在的理论优点之外,该方法从应用的角度来看也很有用。事实上,激光束在材料中的传播通常伴随着非线性自聚焦和反向散射现象。定量分析和预测这些关键现象的能力对于现代科学和工程的许多应用极其重要。后者的范围从远程大气感测(当地面强大的激光向天空发送脉冲时,反向散射辐射占检测到的信号的很大一部分),到激光手术(激光束在组织中传播),再到沿光纤传输信息。还有其他可能的应用,例如涉及同向传播或反向传播激光束之间的相互作用。它们可以为下一代光电电路设计所谓的全光开关提供工具。所提出的数值方法将产生一个强大的工具,用于对上述应用以及许多其他应用进行准确和稳健的分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Semyon Tsynkov其他文献
Preface to the Special Issue in Memory of Professor Saul Abarbanel
- DOI:
10.1007/s10915-019-01084-0 - 发表时间:
2019-11-11 - 期刊:
- 影响因子:3.300
- 作者:
Alina Chertock;Adi Ditkowski;Anne Gelb;Sigal Gottlieb;Semyon Tsynkov - 通讯作者:
Semyon Tsynkov
Deep Learning Approach to the Detection of Scattering Delay in Radar Images
- DOI:
10.1007/s42519-020-00149-w - 发表时间:
2020-11-30 - 期刊:
- 影响因子:0.900
- 作者:
John Lagergren;Kevin Flores;Mikhail Gilman;Semyon Tsynkov - 通讯作者:
Semyon Tsynkov
Semyon Tsynkov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Semyon Tsynkov', 18)}}的其他基金
High-Order Numerical Solution of Wave-Type Equations with Discontinuous Coefficients
具有不连续系数的波动型方程的高阶数值解
- 批准号:
0810963 - 财政年份:2008
- 资助金额:
$ 10.49万 - 项目类别:
Continuing Grant
Temporally Uniform Grid Convergence of Discrete Approximations and Numerical Simulations in the Problems of Wave Propagation over Unbounded Domains
无界域上波传播问题的离散近似的时间均匀网格收敛与数值模拟
- 批准号:
0107146 - 财政年份:2001
- 资助金额:
$ 10.49万 - 项目类别:
Standard Grant
相似海外基金
Numerical Simulation of Hypersonic Turbulent Flow by Spatiotemporal Multi-Scale Reduced Order Model
时空多尺度降阶模型高超声速湍流数值模拟
- 批准号:
23KJ0127 - 财政年份:2023
- 资助金额:
$ 10.49万 - 项目类别:
Grant-in-Aid for JSPS Fellows
High-Order Direct Numerical Simulation and Optimization of Novel Ventricular Assist Devices
新型心室辅助装置的高阶直接数值模拟与优化
- 批准号:
575915-2022 - 财政年份:2022
- 资助金额:
$ 10.49万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
LEAPS-MPS: Robust and High Order Numerical Simulation for Phase Field Modeling
LEAPS-MPS:相场建模的鲁棒高阶数值模拟
- 批准号:
2213436 - 财政年份:2022
- 资助金额:
$ 10.49万 - 项目类别:
Standard Grant
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
- 批准号:
RGPIN-2017-05320 - 财政年份:2021
- 资助金额:
$ 10.49万 - 项目类别:
Discovery Grants Program - Individual
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
- 批准号:
RGPIN-2017-05320 - 财政年份:2020
- 资助金额:
$ 10.49万 - 项目类别:
Discovery Grants Program - Individual
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
- 批准号:
RGPIN-2017-05320 - 财政年份:2019
- 资助金额:
$ 10.49万 - 项目类别:
Discovery Grants Program - Individual
Multi-level methods with high order in time and space for the numerical simulation of incompressible flows
不可压缩流数值模拟的时空高阶多层次方法
- 批准号:
409605784 - 财政年份:2018
- 资助金额:
$ 10.49万 - 项目类别:
Research Grants
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
- 批准号:
RGPIN-2017-05320 - 财政年份:2018
- 资助金额:
$ 10.49万 - 项目类别:
Discovery Grants Program - Individual
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
- 批准号:
RGPIN-2017-05320 - 财政年份:2017
- 资助金额:
$ 10.49万 - 项目类别:
Discovery Grants Program - Individual
Numerical simulation of cosmic structure formation including relativistic effects at leading order using a lattice Boltzmann scheme
使用格子玻尔兹曼方案对宇宙结构形成进行数值模拟,包括主阶相对论效应
- 批准号:
216244574 - 财政年份:2012
- 资助金额:
$ 10.49万 - 项目类别:
Research Fellowships