Temporally Uniform Grid Convergence of Discrete Approximations and Numerical Simulations in the Problems of Wave Propagation over Unbounded Domains
无界域上波传播问题的离散近似的时间均匀网格收敛与数值模拟
基本信息
- 批准号:0107146
- 负责人:
- 金额:$ 9.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-15 至 2005-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Two major well-recognized difficulties in numerical simulation of wavespropagating over unbounded domains are the accumulation of error during long time intervals and necessity to truncate the domain and subsequently set the artificial boundary conditions (ABCs) at the external artificialboundary. These two issues turn out to be closely related. In the previouswork of the PI with collaborators that has been done in the framework ofthe scalar wave equation, we have used the inherently three-dimensional phenomenon of lacunae and developed a methodology that modifies any appropriate discrete scheme so that the long-term error buildup is fully eliminated while all of the original properties of the scheme (e.g., order of accuracy) are preserved. Moreover, the procedure allows one to replace the original infinite domain by a finite computational domain, which leads to obtaining highly accurate non-local unsteady ABCs. These ABCs are built directly for the discrete formulation of the problem, their temporal non-locality is fixed and limited, and they possess full geometric universality. The key objective of the proposed project is to extend the aforementioned methodology to wave-type models of practical interest, in particular, the Maxwell's equations (electromagnetic waves) and the linearized Euler's and full-potential equations (acoustic waves). The attainability of this goal is accounted for by the fact that the solutions to these equations have sharp aft fronts of the waves (manifestation of lacunae), which is the exact same behavior as displayed by the solutions to the wave equation.Numerical simulation of waves on unbounded domains has numerous applications that range from scattering of electromagnetic waves from aircraft and ground vehicles (radar technology) to antenna design to calculation of the acousticfields produced by the airframe and airplane's jet engines for the purpose of reducing the noise levels around airports, as well as inside the passenger compartments. The results that we expect to obtain are going to benefit the foregoing applied areas. Indeed, we anticipate the creation of a universal framework that would allow one to modify a wide class of already existing and proven methods so that to enable two additional crucial capabilities -- long-term integration and accurate computation of infinite-domain wave fields on truncated domains. Besides, as the proposed research unfolds, it will necessarily include communication and collaboration with physicists and engineers, as well as preparation of course materials and training young researchers.
在数值模拟波浪在无界区域上的传播过程中,两个公认的主要困难是在长时间间隔内误差的积累和截断区域并随后在外部人工边界处设置人工边界条件(ABC)的必要性。这两个问题原来是密切相关的。在PI与合作者在标量波动方程框架内进行的先前工作中,我们使用了固有的三维空隙现象,并开发了一种修改任何适当离散方案的方法,以便完全消除长期误差积累,同时保留方案的所有原始属性(例如,准确度)。此外,该程序允许一个有限的计算域取代原来的无限域,这导致获得高精度的非局部非定常ABC。这些ABC是直接为问题的离散形式而建立的,它们的时间非局部性是固定的和有限的,并且它们具有完全的几何普适性。拟议项目的主要目标是将上述方法推广到具有实际意义的波型模型,特别是麦克斯韦方程(电磁波)和线性化欧拉方程和全势方程(声波)。这一目标的可达性是由这些方程的解具有波的尖后锋这一事实来说明的(腔隙的表现),这与波动方程的解所显示的行为完全相同。无界域上的波的数值模拟有许多应用,从飞机和地面车辆的电磁波散射从雷达技术到天线设计,再到计算机身和飞机喷气发动机产生的声场,以降低机场周围和乘客舱内的噪音水平。我们期望得到的结果将有利于上述应用领域。事实上,我们预计创建一个通用的框架,将允许一个修改广泛的类已经存在的和证明的方法,使两个额外的关键能力-长期集成和精确计算的无限域波场截断域。此外,随着拟议研究的展开,它必然包括与物理学家和工程师的沟通和合作,以及准备课程材料和培训年轻研究人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Semyon Tsynkov其他文献
Preface to the Special Issue in Memory of Professor Saul Abarbanel
- DOI:
10.1007/s10915-019-01084-0 - 发表时间:
2019-11-11 - 期刊:
- 影响因子:3.300
- 作者:
Alina Chertock;Adi Ditkowski;Anne Gelb;Sigal Gottlieb;Semyon Tsynkov - 通讯作者:
Semyon Tsynkov
Deep Learning Approach to the Detection of Scattering Delay in Radar Images
- DOI:
10.1007/s42519-020-00149-w - 发表时间:
2020-11-30 - 期刊:
- 影响因子:0.900
- 作者:
John Lagergren;Kevin Flores;Mikhail Gilman;Semyon Tsynkov - 通讯作者:
Semyon Tsynkov
Semyon Tsynkov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Semyon Tsynkov', 18)}}的其他基金
High-Order Numerical Solution of Wave-Type Equations with Discontinuous Coefficients
具有不连续系数的波动型方程的高阶数值解
- 批准号:
0810963 - 财政年份:2008
- 资助金额:
$ 9.5万 - 项目类别:
Continuing Grant
High-Order Numerical Simulation of Focusing Nonlinear Waves in the Non-Paraxial Regime
非近轴区域聚焦非线性波的高阶数值模拟
- 批准号:
0509695 - 财政年份:2005
- 资助金额:
$ 9.5万 - 项目类别:
Standard Grant
相似海外基金
UNIfying Grid-FOllowing And Grid-foRMing Control In Inverter-based Resources (UNIFORM)
统一基于逆变器的资源中的网格跟随和网格形成控制(UNIFORM)
- 批准号:
EP/Y001575/1 - 财政年份:2024
- 资助金额:
$ 9.5万 - 项目类别:
Research Grant
BestYears: Shopping App for Kidswear & School Uniform
BestYears:童装购物应用
- 批准号:
10114568 - 财政年份:2024
- 资助金额:
$ 9.5万 - 项目类别:
SME Support
CAREER: Alternating Current Electrophoresis in Spatially Non-Uniform Electric Fields
职业:空间不均匀电场中的交流电泳
- 批准号:
2340925 - 财政年份:2024
- 资助金额:
$ 9.5万 - 项目类别:
Continuing Grant
Time-Dependent Hydrodynamics in Uniform Fermi Gases
均匀费米气体中的瞬态流体动力学
- 批准号:
2307107 - 财政年份:2023
- 资助金额:
$ 9.5万 - 项目类别:
Continuing Grant
Novel Bioresorbable Vascular Scaffolds with Uniform Biodegradation
具有均匀生物降解性的新型生物可吸收血管支架
- 批准号:
10930188 - 财政年份:2023
- 资助金额:
$ 9.5万 - 项目类别:
Uniformization of non-uniform geometries
非均匀几何形状的均匀化
- 批准号:
2247364 - 财政年份:2023
- 资助金额:
$ 9.5万 - 项目类别:
Standard Grant
Flexible kirigami sheets in uniform and disturbed fluid flow
均匀和扰动流体流动中的柔性剪纸片
- 批准号:
2320300 - 财政年份:2023
- 资助金额:
$ 9.5万 - 项目类别:
Standard Grant
Chinese language versions of the National Alzheimer's Coordinating Center's Uniform Data Set version 4: a linguistic and cultural adaptation study
国家阿尔茨海默病协调中心统一数据集第4版中文版:语言和文化适应研究
- 批准号:
10740587 - 财政年份:2023
- 资助金额:
$ 9.5万 - 项目类别:
Research on the Fundamental Mechanism of Non-Uniform Gas Detonation Propagation: Interference between Shock Waves and Heterogeneous Free Jets
气体非均匀爆震传播的基本机制研究:冲击波与非均质自由射流的干涉
- 批准号:
23KK0083 - 财政年份:2023
- 资助金额:
$ 9.5万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Development of an Efficient, Parameter Uniform and Robust Fluid Solver in Porous Media with Complex Geometries
复杂几何形状多孔介质中高效、参数均匀且鲁棒的流体求解器的开发
- 批准号:
2309557 - 财政年份:2023
- 资助金额:
$ 9.5万 - 项目类别:
Standard Grant