Scalable Iterative Solution of Large Linear Systems with Applications in Fluid Dynamics, Radiation Transport and Markov Chains

大型线性系统的可扩展迭代解决方案及其在流体动力学、辐射传输和马尔可夫链中的应用

基本信息

  • 批准号:
    0511336
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-08-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

The solution of large systems of linear equations remains one ofthe main bottlenecks in many numerical simulations throughoutcomputational science and engineering. Despite much recent progress,there is still a great need for improved iterative solvers in suchareas as fluid dynamics, radiation transport, magnetohydrodynamics,image processing, computational mechanics, acoustics, and so forth.The increasingly important area of data mining and informationretrieval also makes heavy use of sparse matrix techniques andnecessitates reliable and scalable algorithms for linear equations and eigenvalue problems. The PI will investigate efficient iterativesolvers with a focus on preconditioning techniques for nonsymmetric and indefinite problems. The PI proposes to use a blend of algebraic and problem-specific techniques to construct robust and scalablesolvers for linear systems arising from discretizations of problemsfrom fluid dynamics and radiation transport, as well as for solvinglarge sparse complex symmetric systems and for computing the stationaryvector of Markov chains.The ultimate goal of research in computational mathematics is toprovide scientists and engineers the algorithmic and software toolsneeded for the solution of challenging scientific and technical problemsof increasing size and complexity. The competitiveness of American scienceand technology greatly benefits from (and to a large extent depends on)the creation of innovative computational methods and software and by the continuous improvement of existing techniques. Progress in the solutionof the problems targeted by the PI will have a positive impact on scienceand engineering by enabling faster and more detailed computer simulations.In addition, several graduate students (and possibly a few undergraduates)will be impacted by this research either through direct involvement, orthrough the positive effects this research will have on the PI's teachingof computational and applied mathematics courses at Emory University.
大型线性方程组的求解一直是计算科学和工程中许多数值模拟的主要瓶颈之一。尽管最近取得了很大的进展,但在诸如流体动力学、辐射输运、磁流体力学、图像处理、计算力学、声学等领域仍然需要改进的迭代求解器。日益重要的数据挖掘和信息检索领域也大量使用稀疏矩阵技术,并且需要可靠和可扩展的线性方程和特征值问题的算法。PI将研究有效的迭代求解器,重点是非对称和不确定问题的预处理技术。PI建议使用代数和特定问题技术的混合,为流体动力学和辐射传输问题的离散化所产生的线性系统构建鲁棒和可扩展的求解器,计算数学研究的最终目标是为科学家和工程师提供所需的算法和软件工具,the solution解决of challenging挑战性scientific科学and technical技术problems问题of increasing增加size尺寸and complexity复杂性.美国科学技术的竞争力极大地得益于(并在很大程度上取决于)创新计算方法和软件的创造以及现有技术的不断改进。PI所针对的问题的解决进展将通过更快和更详细的计算机模拟对科学和工程产生积极的影响。此外,一些研究生(可能还有一些本科生)将通过直接参与这项研究或通过这项研究对PI在埃默里大学的计算和应用数学课程的教学产生积极影响而受到影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michele Benzi其他文献

Aeíååêáááä Äáaeaeaeê Ääääêê Ïáìà Èèäáááìáçaeë Aeùññöº Ääòòö Ððððö Ôô𺠾¼¼½½ ½ß¾¼
Aeíååêáááä äáaeaeaeê ääääêê Ïáìà Èèäáááìáçaeë Aeùññöº äòòö Ððððö Ôô𺠤⁄¼½½ ½ß¤⁄
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michele Benzi;Todd A. Wareing;Jim E. Morel
  • 通讯作者:
    Jim E. Morel
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC A Sparse Approximate Inverse Preconditioner For The Conjugate Gradient Method
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michele Benzi
  • 通讯作者:
    Michele Benzi
An augmented Lagrangian-based preconditioning technique for a class of block three-by-three linear systems
一类块三对角线性系统的基于增广拉格朗日的预处理技术
  • DOI:
    10.1016/j.aml.2023.108903
  • 发表时间:
    2024-03-01
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Fatemeh P.A. Beik;Michele Benzi
  • 通讯作者:
    Michele Benzi
Solving Cubic Matrix Equations Arising in Conservative Dynamics
  • DOI:
    10.1007/s10013-022-00578-z
  • 发表时间:
    2022-10-11
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Michele Benzi;Milo Viviani
  • 通讯作者:
    Milo Viviani

Michele Benzi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michele Benzi', 18)}}的其他基金

Generalized Matrix Functions: Theory, Algorithms, and Applications
广义矩阵函数:理论、算法和应用
  • 批准号:
    1719578
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Numerical Methods for Graph and Network Analysis
图和网络分析的数值方法
  • 批准号:
    1418889
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Numerical Linear Algebra Tools for the Analysis of Complex Networks
用于分析复杂网络的数值线性代数工具
  • 批准号:
    1115692
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Approximation of Matrix Functions: Theory, Algorithms, and Software
矩阵函数的逼近:理论、算法和软件
  • 批准号:
    0810862
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The 2005 International Conference on Preconditioning Techniques for Large Sparse Matrix Problems in Industrial Applications; May 19-21, 2005; Atlanta, GA
2005年工业应用中大型稀疏矩阵问题预处理技术国际会议;
  • 批准号:
    0435964
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development, Analysis, and Implementation of Robust Algebraic Preconditioners for Sparse Linear Systems
稀疏线性系统鲁棒代数预处理器的开发、分析和实现
  • 批准号:
    0207599
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Combining direct and iterative methods in the solution of large, sparse linear systems
结合直接法和迭代法求解大型稀疏线性系统
  • 批准号:
    304472-2004
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Combining direct and iterative methods in the solution of large, sparse linear systems
结合直接法和迭代法求解大型稀疏线性系统
  • 批准号:
    304472-2004
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Combining direct and iterative methods in the solution of large, sparse linear systems
结合直接法和迭代法求解大型稀疏线性系统
  • 批准号:
    304472-2004
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Combining direct and iterative methods in the solution of large, sparse linear systems
结合直接法和迭代法求解大型稀疏线性系统
  • 批准号:
    304472-2004
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Multipole Accelerated Iterative Algorithms for the Rapid Solution of Three Dimensional Integral Equations, Including Adaptive Regridding and Higher-Order Elements
用于快速求解三维积分方程的多极加速迭代算法,包括自适应重新网格化和高阶元素
  • 批准号:
    9301189
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Supercomputer Initiation: Solution of Neutron Diffusion Equation Using Parallel Iterative Algorithms
超级计算机启动:使用并行迭代算法求解中子扩散方程
  • 批准号:
    8515817
  • 财政年份:
    1985
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Analysis of Approximate Factorizations; the Iterative Solution of Nonsymmetric and Symmetric Indefinite Linear Algebraic Systems
近似因式分解分析;
  • 批准号:
    7906123
  • 财政年份:
    1979
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
New Iterative Techniques For the Solution of Indefinite Partial Differential and Other Equations and Inequality Systems
求解不定偏微分和其他方程及不等式系统的新迭代技术
  • 批准号:
    7904521
  • 财政年份:
    1979
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A Numerical Investigation of One-Step Iterative Methods For The Solution of Nonlinear Equations
求解非线性方程的一步迭代法的数值研究
  • 批准号:
    7400102
  • 财政年份:
    1974
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ITERATIVE SOLUTION OF LINEAR ALGEBRAIC SYSTEMS ARISING FROM THE FINITE ELEMENT METHOD
有限元法线性代数系统的迭代求解
  • 批准号:
    7464481
  • 财政年份:
    1974
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了