Approximation of Matrix Functions: Theory, Algorithms, and Software
矩阵函数的逼近:理论、算法和软件
基本信息
- 批准号:0810862
- 负责人:
- 金额:$ 22.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project has two main goals. One goal is to provide rigorous mathematical foundations for a wide array of techniques developed by physicists, chemists, and other scientists over the last 10-15 years to perform computer simulations in fields ranging from theoretical chemistry and molecular physics to data mining and statistics. A common theme in these areas is the need to quickly compute approximations of functions of large and sparse matrices (such as the exponential, the square root, the logarithm, and combinations thereof). Scientists have had some success using a combination of physical intuition and heuristics, but rigorous justifications and analysis are still lacking and are sorely needed. On the other hand, computational mathematicians have until now devoted scant attention to these types of problems. The present project addresses this need. The main conceptual tool is a theory of localization, in the form of decay bounds, that the PI has been developing in recent years.Another goal is to construct better (i.e., faster and more accurate) algorithms to compute the desired approximations. The PI will devote considerable effort to this objective, in particular using various types of polynomial approximations (interpolation, Chebyshev, Faber, etc). The resulting software will be distributed to interested parties.The ultimate goal of research in computational mathematics is to provide scientists and engineers the algorithmic and software tools needed for the solution of challenging scientific and technical problems of increasing size and complexity. The competitiveness of American science and technology greatly benefits from (and to a large extent depends on) the creation of innovative computational methods and software and from the continuous improvement of existing techniques. Progress in the solution of the problems targeted by the PI will have a positive impact on science and engineering by enabling faster and more detailed computer simulations. In addition, several graduate students (and possibly a few undergraduates) will be impacted by this research either through direct involvement, or through the positive effects this research will have on the PI's teaching of computational and applied mathematics courses at Emory University.
该项目有两个主要目标。 一个目标是为物理学家,化学家和其他科学家在过去10-15年中开发的各种技术提供严格的数学基础,以在从理论化学和分子物理到数据挖掘和统计学的领域进行计算机模拟。 这些领域的一个共同主题是需要快速计算大型稀疏矩阵的函数的近似值(例如指数,平方根,对数及其组合)。 科学家们结合物理直觉和物理学已经取得了一些成功,但仍然缺乏严格的论证和分析,而且非常需要。 另一方面,计算数学家到目前为止很少关注这类问题。 本项目就是为了满足这一需要。 主要的概念工具是PI近年来一直在发展的以衰变边界形式存在的局部化理论。另一个目标是构建更好的(即,更快和更精确)的算法来计算期望的近似。 PI将为此目标投入大量精力,特别是使用各种类型的多项式近似(插值,Chebyshev,Faber等)。 计算数学研究的最终目标是为科学家和工程师提供所需的算法和软件工具,以解决规模和复杂性不断增加的具有挑战性的科学和技术问题。 美国科学技术的竞争力极大地得益于(并在很大程度上取决于)创新计算方法和软件的创造,以及现有技术的不断改进。 PI所针对的问题的解决进展将通过实现更快和更详细的计算机模拟对科学和工程产生积极影响。 此外,一些研究生(可能还有一些本科生)将通过直接参与这项研究或通过这项研究将对埃默里大学计算和应用数学课程的PI教学产生积极影响而受到影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michele Benzi其他文献
Aeíååêáááä Äáaeaeaeê Ääääêê Ïáìà Èèäáááìáçaeë Aeùññöº Ääòòö Ððððö Ôô𺠾¼¼½½ ½ß¾¼
Aeíååêáááä äáaeaeaeê ääääêê Ïáìà Èèäáááìáçaeë Aeùññöº äòòö Ððððö Ôô𺠤⁄¼½½ ½ß¤⁄
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Michele Benzi;Todd A. Wareing;Jim E. Morel - 通讯作者:
Jim E. Morel
Decay properties for functions of matrices over <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math>-algebras
- DOI:
10.1016/j.laa.2013.11.027 - 发表时间:
2014-09-01 - 期刊:
- 影响因子:
- 作者:
Michele Benzi;Paola Boito - 通讯作者:
Paola Boito
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC A Sparse Approximate Inverse Preconditioner For The Conjugate Gradient Method
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Michele Benzi - 通讯作者:
Michele Benzi
An augmented Lagrangian-based preconditioning technique for a class of block three-by-three linear systems
一类块三对角线性系统的基于增广拉格朗日的预处理技术
- DOI:
10.1016/j.aml.2023.108903 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:2.800
- 作者:
Fatemeh P.A. Beik;Michele Benzi - 通讯作者:
Michele Benzi
Solving Cubic Matrix Equations Arising in Conservative Dynamics
- DOI:
10.1007/s10013-022-00578-z - 发表时间:
2022-10-11 - 期刊:
- 影响因子:0.700
- 作者:
Michele Benzi;Milo Viviani - 通讯作者:
Milo Viviani
Michele Benzi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michele Benzi', 18)}}的其他基金
Generalized Matrix Functions: Theory, Algorithms, and Applications
广义矩阵函数:理论、算法和应用
- 批准号:
1719578 - 财政年份:2017
- 资助金额:
$ 22.95万 - 项目类别:
Standard Grant
Numerical Methods for Graph and Network Analysis
图和网络分析的数值方法
- 批准号:
1418889 - 财政年份:2014
- 资助金额:
$ 22.95万 - 项目类别:
Standard Grant
Numerical Linear Algebra Tools for the Analysis of Complex Networks
用于分析复杂网络的数值线性代数工具
- 批准号:
1115692 - 财政年份:2011
- 资助金额:
$ 22.95万 - 项目类别:
Standard Grant
Scalable Iterative Solution of Large Linear Systems with Applications in Fluid Dynamics, Radiation Transport and Markov Chains
大型线性系统的可扩展迭代解决方案及其在流体动力学、辐射传输和马尔可夫链中的应用
- 批准号:
0511336 - 财政年份:2005
- 资助金额:
$ 22.95万 - 项目类别:
Standard Grant
The 2005 International Conference on Preconditioning Techniques for Large Sparse Matrix Problems in Industrial Applications; May 19-21, 2005; Atlanta, GA
2005年工业应用中大型稀疏矩阵问题预处理技术国际会议;
- 批准号:
0435964 - 财政年份:2004
- 资助金额:
$ 22.95万 - 项目类别:
Standard Grant
Development, Analysis, and Implementation of Robust Algebraic Preconditioners for Sparse Linear Systems
稀疏线性系统鲁棒代数预处理器的开发、分析和实现
- 批准号:
0207599 - 财政年份:2002
- 资助金额:
$ 22.95万 - 项目类别:
Standard Grant
相似国自然基金
基于Matrix2000加速器的个性小数据在线挖掘
- 批准号:2020JJ4669
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
多模强激光场R-MATRIX-FLOQUET理论
- 批准号:19574020
- 批准年份:1995
- 资助金额:7.5 万元
- 项目类别:面上项目
相似海外基金
Identifying the mechanisms behind non-apoptotic functions of mitochondrial matrix-localized MCL-1
确定线粒体基质定位的 MCL-1 非凋亡功能背后的机制
- 批准号:
10537709 - 财政年份:2022
- 资助金额:
$ 22.95万 - 项目类别:
Collaborative Research: Defining functions of an essential, conserved protein that uniquely links the mitochondrial matrix with the cytoplasm
合作研究:定义一种重要的、保守的蛋白质的功能,该蛋白质将线粒体基质与细胞质独特地连接起来
- 批准号:
2215728 - 财政年份:2022
- 资助金额:
$ 22.95万 - 项目类别:
Standard Grant
Collaborative Research: Defining functions of an essential, conserved protein that uniquely links the mitochondrial matrix with the cytoplasm
合作研究:定义一种重要的、保守的蛋白质的功能,该蛋白质将线粒体基质与细胞质独特地连接起来
- 批准号:
2215729 - 财政年份:2022
- 资助金额:
$ 22.95万 - 项目类别:
Standard Grant
Collaborative Research: Defining functions of an essential, conserved protein that uniquely links the mitochondrial matrix with the cytoplasm
合作研究:定义一种重要的、保守的蛋白质的功能,该蛋白质将线粒体基质与细胞质独特地连接起来
- 批准号:
2215730 - 财政年份:2022
- 资助金额:
$ 22.95万 - 项目类别:
Standard Grant
Identifying the mechanisms behind non-apoptotic functions of mitochondrial matrix-localized MCL-1
确定线粒体基质定位的 MCL-1 非凋亡功能背后的机制
- 批准号:
10676766 - 财政年份:2022
- 资助金额:
$ 22.95万 - 项目类别:
Collaborative Research: Defining functions of an essential, conserved protein that uniquely links the mitochondrial matrix with the cytoplasm
合作研究:定义一种重要的、保守的蛋白质的功能,该蛋白质将线粒体基质与细胞质独特地连接起来
- 批准号:
2215727 - 财政年份:2022
- 资助金额:
$ 22.95万 - 项目类别:
Standard Grant
Study on moonlighting functions of extracellular matrix components in biofilm development
细胞外基质成分在生物膜发育中的兼职功能研究
- 批准号:
20H02904 - 财政年份:2020
- 资助金额:
$ 22.95万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Functions of extracellular matrix proteins in dental and skeletal mineralization
细胞外基质蛋白在牙齿和骨骼矿化中的功能
- 批准号:
10626826 - 财政年份:2019
- 资助金额:
$ 22.95万 - 项目类别:
Loci of Complex Polynomials, Generalized Primary Matrix Functions, and Connections with Bernstein Functions and Levy Processes
复多项式的轨迹、广义初等矩阵函数以及与 Bernstein 函数和 Levy 过程的联系
- 批准号:
RGPIN-2015-04540 - 财政年份:2019
- 资助金额:
$ 22.95万 - 项目类别:
Discovery Grants Program - Individual
Functions of extracellular matrix proteins in dental and skeletal mineralization
细胞外基质蛋白在牙齿和骨骼矿化中的功能
- 批准号:
9980842 - 财政年份:2019
- 资助金额:
$ 22.95万 - 项目类别: