Numerical Methods for Graph and Network Analysis
图和网络分析的数值方法
基本信息
- 批准号:1418889
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-15 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Network science, the study of large, interconnected complex systems, has been the focus of much effort on the part of many scientists in recent years. The modeling and analysis of natural, engineered, and social networks, ranging from molecular and biological networks to the Internet, the World Wide Web, and also to online social media like Facebook and Twitter, has emerged as an important multidisciplinary field of study. Progress in this area is rapidly affecting many traditional fields of science and engineering as well as areas like public health, business, marketing, finance, and national security. The project concerns the development and analysis of computational methods for studying the structure of networks and of certain dynamical processes taking place on them. In particular, the project will develop mathematically sound approaches for maximally increasing the connectivity and robustness of networks when only a limited number of links can be added or modified. Network robustness is of paramount importance when designing infrastructure networks, since real world networks must be resilient to damage resulting from natural disasters or by man-made, malicious attacks. In addition, the project will develop efficient techniques for simulating the spread of information, viruses, rumors, etc. on networks, as well as the propagation of shocks. The techniques will be implemented on computers and tested on existing available data sets, and the software will be made available to other researchers. In the first part of the project we will design efficient algorithms for increasing network robustness and connectivity using as an objective function the total communicability of the network, which is a scalar quantity associated with the adjacency matrix of the graph. In particular, we will investigate different criteria for the addition of links in such a way as to (approximately) maximize the increase in total communicability. Edge rewiring and deletion will also be studied. The second part of the project deals with the numerical analysis of so-called Quantum Graphs. We will study numerical methods, including finite element discretizations and fast linear algebra, for solving PDEs posed on metric graphs (1D simplicial complexes), such as the diffusion and Schroedinger equations. In particular, we will study domain decomposition and iterative substructuring methods for solving the large linear systems arising when solving elliptic and parabolic problems on graphs. Exponential integrators based on Krylov subspace methods will also be investigated.
网络科学是研究大型、相互关联的复杂系统的科学,近年来一直是许多科学家努力的焦点。自然的、工程的和社交网络的建模和分析,从分子和生物网络到互联网、万维网,以及Facebook和Twitter等在线社交媒体,已经成为一个重要的多学科研究领域。这一领域的进展正在迅速影响许多传统的科学和工程领域,以及公共卫生、商业、市场营销、金融和国家安全等领域。该项目涉及研究网络结构和网络上发生的某些动态过程的计算方法的开发和分析。特别是,该项目将开发数学上合理的方法,以便在只能增加或修改有限数量的链接时最大限度地增加网络的连通性和鲁棒性。在设计基础设施网络时,网络鲁棒性至关重要,因为真实的世界网络必须能够抵御自然灾害或人为恶意攻击造成的破坏。此外,该项目将开发有效的技术,用于模拟网络上的信息、病毒、谣言等的传播以及冲击的传播。这些技术将在计算机上实施,并在现有的数据集上进行测试,该软件将提供给其他研究人员。 在该项目的第一部分,我们将设计有效的算法,以提高网络的鲁棒性和连通性作为目标函数的网络,这是一个标量与图的邻接矩阵。特别是,我们将研究不同的标准,以增加链接的方式(近似)最大限度地提高总的可通信性。边缘重新布线和删除也将进行研究。该项目的第二部分涉及所谓的量子图的数值分析。我们将研究数值方法,包括有限元离散化和快速线性代数,用于解决度量图(一维单纯形复形)上的偏微分方程,如扩散和薛定谔方程。特别是,我们将研究区域分解和迭代子结构方法来解决大型线性系统时,解决椭圆和抛物线问题的图。基于Krylov子空间方法的指数积分器也将被研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michele Benzi其他文献
Aeíååêáááä Äáaeaeaeê Ääääêê Ïáìà Èèäáááìáçaeë Aeùññöº Ääòòö Ððððö Ôô𺠾¼¼½½ ½ß¾¼
Aeíååêáááä äáaeaeaeê ääääêê Ïáìà Èèäáááìáçaeë Aeùññöº äòòö Ððððö Ôô𺠤⁄¼½½ ½ß¤⁄
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Michele Benzi;Todd A. Wareing;Jim E. Morel - 通讯作者:
Jim E. Morel
Decay properties for functions of matrices over <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math>-algebras
- DOI:
10.1016/j.laa.2013.11.027 - 发表时间:
2014-09-01 - 期刊:
- 影响因子:
- 作者:
Michele Benzi;Paola Boito - 通讯作者:
Paola Boito
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC A Sparse Approximate Inverse Preconditioner For The Conjugate Gradient Method
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Michele Benzi - 通讯作者:
Michele Benzi
An augmented Lagrangian-based preconditioning technique for a class of block three-by-three linear systems
一类块三对角线性系统的基于增广拉格朗日的预处理技术
- DOI:
10.1016/j.aml.2023.108903 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:2.800
- 作者:
Fatemeh P.A. Beik;Michele Benzi - 通讯作者:
Michele Benzi
Solving Cubic Matrix Equations Arising in Conservative Dynamics
- DOI:
10.1007/s10013-022-00578-z - 发表时间:
2022-10-11 - 期刊:
- 影响因子:0.700
- 作者:
Michele Benzi;Milo Viviani - 通讯作者:
Milo Viviani
Michele Benzi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michele Benzi', 18)}}的其他基金
Generalized Matrix Functions: Theory, Algorithms, and Applications
广义矩阵函数:理论、算法和应用
- 批准号:
1719578 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Numerical Linear Algebra Tools for the Analysis of Complex Networks
用于分析复杂网络的数值线性代数工具
- 批准号:
1115692 - 财政年份:2011
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Approximation of Matrix Functions: Theory, Algorithms, and Software
矩阵函数的逼近:理论、算法和软件
- 批准号:
0810862 - 财政年份:2008
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Scalable Iterative Solution of Large Linear Systems with Applications in Fluid Dynamics, Radiation Transport and Markov Chains
大型线性系统的可扩展迭代解决方案及其在流体动力学、辐射传输和马尔可夫链中的应用
- 批准号:
0511336 - 财政年份:2005
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
The 2005 International Conference on Preconditioning Techniques for Large Sparse Matrix Problems in Industrial Applications; May 19-21, 2005; Atlanta, GA
2005年工业应用中大型稀疏矩阵问题预处理技术国际会议;
- 批准号:
0435964 - 财政年份:2004
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Development, Analysis, and Implementation of Robust Algebraic Preconditioners for Sparse Linear Systems
稀疏线性系统鲁棒代数预处理器的开发、分析和实现
- 批准号:
0207599 - 财政年份:2002
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Graph learning methods for engieering mammalian promoters in bioproduction
生物生产中哺乳动物启动子的图学习方法
- 批准号:
2786047 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Studentship
LEAPS-MPS: Applications of Algebraic and Topological Methods in Graph Theory Throughout the Sciences
LEAPS-MPS:代数和拓扑方法在图论中在整个科学领域的应用
- 批准号:
2313262 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Automatic Methods for Knowledge Graph Construction using Ontology-based Context Management
使用基于本体的上下文管理的知识图谱自动构建方法
- 批准号:
23H03462 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
On Regularity Methods and Applications in Graph Theory
论图论中的正则方法及其应用
- 批准号:
2404167 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
SCH: Graph-based Spatial Transcriptomics Computational Methods in Kidney Diseases
SCH:肾脏疾病中基于图的空间转录组学计算方法
- 批准号:
10816929 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Nonparametric statistical methods based on graph theory
基于图论的非参数统计方法
- 批准号:
RGPIN-2022-03264 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Spectral methods for single and multiple graph inference
用于单图和多图推理的谱方法
- 批准号:
2210805 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
III: Small: Comprehensive Methods to Learn to Augment Graph Data
III:小:学习增强图数据的综合方法
- 批准号:
2146761 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Graph Theoretical Methods for Blockchain Data Analysis
区块链数据分析的图论方法
- 批准号:
2139349 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Signal Processing Over Networks: Graph-Based Methods for Data Analysis
网络信号处理:基于图的数据分析方法
- 批准号:
RGPIN-2017-06266 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual