Development, implementation and applications of fundamental algorithms, relying on Gröbner bases in free associative algebras
依赖于自由联想代数中的 Gröbner 基础的基础算法的开发、实现和应用
基本信息
- 批准号:171336129
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2010
- 资助国家:德国
- 起止时间:2009-12-31 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is part of mathematical Computer Algebra. It has applications in Ring Theory, Representation Theory, Computer Science and other disciplines. In order to perform Gröbner basis-like computations in a free associative algebra, one can use the recently developed letterplace correspondence between ideals and perform the computations in a large commutative polynomial ring. Such rings have been intensively studied before, in particular from a computer algebraic point of view. As a result, very effective data structures are known and fundamental algorithms have been optimized and implemented in computer algebra systems. The corresponding situation for non-commutative rings is less developed. The systematic use of the letterplace correspondence provides new insights and new levels of efficiency into the challenging realm of computations in free algebras and their factor rings. We aim at the creation of an extension LETTERPLACE of the well-known computer algebra system SINGULAR. This will for the first time provide efficient implementations of Gröbner bases and all the basic algorithms involving Gröbner bases in these algebras, for instance syzygy modules, elimination, kernels of ring and module homomorphisms. A preliminary implementation of the Letterplace Gröbner basis algorithm is available in the kernel of SINGULAR and it has already demonstrated very good performance. The next step will be to use these implementations to tackle hitherto unaccessible problems. For instance, we intend compute the K-dimension, explicit K-bases and (truncated) Hilbert series for non-commutative K-algebras. Another area of applications are computations in monoid and group rings where we plan to adress questions such as finiteness of a finitely presented group, the generalized word problem, the conjugator search problem, freeness tests for groups and the structure of the group of torsion elements of a group algebra. To guide these applications, we intend to collaborate with several research groups in Germany and across the world.
这个项目是数学计算机代数的一部分。它在环论、表示论、计算机科学等学科中有应用。为了在自由结合代数中进行类似Gröbner基的计算,可以使用最近发展的理想之间的字母位置对应,并在一个大的交换多项式环中进行计算。这样的环已经深入研究之前,特别是从计算机代数的角度来看。因此,非常有效的数据结构是已知的,基本的算法已被优化,并在计算机代数系统中实现。非交换环的相应情况较少发展。系统地使用字母对应提供了新的见解和新的效率水平到具有挑战性的领域的计算自由代数及其因子环。我们的目标是创建一个扩展的LETTERPLACE的著名的计算机代数系统奇异。这将是第一次提供有效的实现Gröbner基地和所有的基本算法涉及Gröbner基地在这些代数,例如syzygy模块,消除,内核的环和模块同态。在SINGULAR的内核中可以初步实现Letterplace Gröbner基算法,并且已经表现出非常好的性能。下一步将是使用这些实现来解决迄今为止无法解决的问题。例如,我们打算计算非交换K-代数的K-维,显式K-基和(截断)Hilbert级数。另一个领域的应用是计算在幺半群和群环,我们计划解决的问题,如有限性的一个群,广义字的问题,共轭搜索问题,自由度测试的群体和结构的一组扭转元素的一组代数。为了指导这些应用,我们打算与德国和世界各地的几个研究小组合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Martin Kreuzer其他文献
Professor Dr. Martin Kreuzer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Targeted Infusion Project: Development and Implementation of courses in Deep Learning for Industrial and Societal Applications
有针对性的注入项目:工业和社会应用深度学习课程的开发和实施
- 批准号:
2306300 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CTSA K12 Program at University of Utah: Early Career Faculty Development Program
犹他大学 CTSA K12 项目:早期职业教师发展项目
- 批准号:
10622139 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development and Application of T1rho Dispersion Imaging of Aging Muscle
衰老肌肉T1rho色散成像的开发与应用
- 批准号:
10428316 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Development and Application of T1rho Dispersion Imaging of Aging Muscle
衰老肌肉T1rho色散成像的开发与应用
- 批准号:
10629331 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Development and pilot testing of a behavioral economics mobile health digital tool to improve adherence to non-pharmacologic strategies for behavioral and psychological symptoms of dementia
开发和试点测试行为经济学移动健康数字工具,以提高对痴呆症行为和心理症状的非药物策略的依从性
- 批准号:
10580000 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Development and pilot testing of a behavioral economics mobile health digital tool to improve adherence to non-pharmacologic strategies for behavioral and psychological symptoms of dementia
开发和试点测试行为经济学移动健康数字工具,以提高对痴呆症行为和心理症状的非药物策略的依从性
- 批准号:
10349954 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Pathways to scale up integrated early childhood development programs
扩大综合幼儿发展计划的途径
- 批准号:
10389278 - 财政年份:2021
- 资助金额:
-- - 项目类别:














{{item.name}}会员




