Collaborative Research: Multigrid Methods for PDE Constrained Optimization

协作研究:偏微分方程约束优化的多重网格方法

基本信息

  • 批准号:
    0511624
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-01 至 2009-08-31
  • 项目状态:
    已结题

项目摘要

The aim of this proposal is to develop, analyze and implement a class of optimization algorithms that integrate multilevel iterative solvers and so-called `all-at-once' optimization methods. Multilevel techniques provide efficient partial differential equation (PDE) solvers with regard to algorithmic complexity. Optimization methods based on the all-at-once approach, such as sequential quadratic programming (SQP) methods and primal-dual Newton interior-point methods, incorporate the PDEs as constraints into the optimization routine and hold the promise to save a considerable amount of computational work compared to methods that view the PDE solution as an implicit function of the control/design variables. This research integrates multilevel techniques and optimization algorithms to extract an adequate amount of structural information from the originally infinite dimensional optimization problem which can not be achieved when only relying on a single grid. In addition to general PDE constrained optimization algorithm development, this proposal will also contribute to the development of solution methods for two challenging real-life applications: the shape optimization of electrorheological devices and the identification of different phases in atmospheric aerosol modeling. Both applications are governed by complex systems of PDEs with nonlinearities due to, e.g., the constitutive equations or the intricate coupling conditions for the PDEs. Moreover, both optimization problems involve additional equality and inequality constraints due to design specifications or problem chemistry.This research provides new algorithmic tools for optimization problems with constraints given by systems of partial differential equations (PDEs). The solution of such problems is an important task in an increasing number real-life applications such as the shape optimization of technological devices and the identification of physical quantities in atmospheric and geophysical processes. Despite recent progress, the reliable numerical solution of these optimization problems still represents a challenging task. Challenges arise, e.g., from the complexity of the underlying PDEs, from the large scale of the optimization problems and from the interactions of the structure of the underlying application, the numerical solution of PDEs and the numerical optimization. In addition to general algorithm development, this research also tackles two important and challenging real-life PDE constrained optimization applications: the shape optimization of electrorheological devices, such as shock absorbers, and the identification of different phases in atmospheric aerosol modeling, a crucial component in environmental research.
该提案的目的是开发、分析和实现一类优化算法,该算法集成了多级迭代求解器和所谓的“一次性”优化方法。多级技术提供了有效的偏微分方程(PDE)求解算法的复杂性。基于一次性方法的优化方法,如序列二次规划(SQP)方法和原始-对偶牛顿邻域点方法,将PDE作为约束纳入优化程序,并有望节省大量的计算工作相比,将PDE解视为控制/设计变量的隐函数的方法。本研究整合多层技术与优化演算法,以从原本无限维的优化问题中撷取足够的结构资讯,而这是单一网格无法达到的。除了一般的偏微分方程约束优化算法的发展,这项建议也将有助于两个具有挑战性的现实生活中的应用:电流变装置的形状优化和大气气溶胶建模中的不同阶段的识别的解决方案的方法的发展。这两种应用都是由具有非线性的偏微分方程的复杂系统控制的,例如,偏微分方程的本构方程或复杂的耦合条件。此外,这两个优化问题涉及额外的等式和不等式的约束,由于设计规格或问题的化学。这些问题的解决方案是一个重要的任务,在越来越多的现实生活中的应用,如形状优化的技术设备和大气和地球物理过程中的物理量的识别。尽管最近的进展,这些优化问题的可靠的数值解仍然是一项具有挑战性的任务。 挑战出现,例如,从底层偏微分方程的复杂性,从优化问题的大规模和从底层应用程序的结构,偏微分方程的数值解和数值优化的相互作用。除了一般的算法开发,这项研究还解决了两个重要的和具有挑战性的现实生活中的PDE约束优化应用:电流变装置,如减震器的形状优化,并识别不同阶段的大气气溶胶建模,在环境研究中的一个重要组成部分。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthias Heinkenschloss其他文献

Sensitivity Technologies for Large Scale Simulation
大规模仿真的灵敏度技术
  • DOI:
    10.2172/921606
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Collis;R. Bartlett;Thomas Michael Smith;Matthias Heinkenschloss;Lucas C. Wilcox;Judith C. Hill;Omar Ghattas;Martin Olof Berggren;V. Akçelik;C. Ober;B. van Bloemen Waanders;E. Keiter
  • 通讯作者:
    E. Keiter
g Institut für Mathematik
g 数学研究所
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harbir Antil;Matthias Heinkenschloss;Ronald H. W. Hoppe;Danny C. Sorensen
  • 通讯作者:
    Danny C. Sorensen
Interpolatory model reduction of quadratic-bilinear dynamical systems with quadratic-bilinear outputs
具有二次双线性输出的二次双线性动力系统的插值模型简化
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Alejandro N. Diaz;Matthias Heinkenschloss;I. V. Gosea;A. Antoulas
  • 通讯作者:
    A. Antoulas

Matthias Heinkenschloss的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthias Heinkenschloss', 18)}}的其他基金

Novel Multiple-Shooting Algorithms for Optimization Governed by Time-Dependent Partial Differential Equations
时相关偏微分方程控制的新型多重射击优化算法
  • 批准号:
    1819144
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Numerical Solution of Constrained Optimization Problems Governed by Partial Differential Equations with Uncertain Parameters
参数不确定的偏微分方程约束优化问题的数值求解
  • 批准号:
    1522798
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Reduced Order Model Approaches for Time Dependent Nonlinear PDE Constrained Optimization
协作研究:用于瞬态非线性 PDE 约束优化的降阶模型方法
  • 批准号:
    1115345
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Efficient Solution of Advection Dominated PDE Constrained Optimization Problems
平流主导偏微分方程约束优化问题的高效求解
  • 批准号:
    0915238
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ITR/AP COLLABORATIVE RESEARCH: Real Time Optimization for Data Assimilation and Control of Large Scale Dynamic Simulations
ITR/AP 合作研究:大规模动态模拟数据同化和控制的实时优化
  • 批准号:
    0121360
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Optimization of Parabolic Systems: Iterative Methods, Suboptimal Controls, and Preconditioning
抛物线系统的优化:迭代方法、次优控制和预处理
  • 批准号:
    0075731
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences Scientific Computing Research Environments
数学科学科学计算研究环境
  • 批准号:
    9872009
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Optimization Methods for Optimal Control and Parameter Identification Problems
数学科学:最优控制和参数辨识问题的优化方法
  • 批准号:
    9403699
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
  • 批准号:
    AH/X011747/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
  • 批准号:
    502555
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
  • 批准号:
    DE240100161
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
  • 批准号:
    2902365
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
  • 批准号:
    EP/Y031962/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
FCEO-UKRI Senior Research Fellowship - conflict
FCEO-UKRI 高级研究奖学金 - 冲突
  • 批准号:
    EP/Y033124/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
  • 批准号:
    EP/Y033183/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
  • 批准号:
    NE/Y005457/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了