Efficient Solution of Advection Dominated PDE Constrained Optimization Problems
平流主导偏微分方程约束优化问题的高效求解
基本信息
- 批准号:0915238
- 负责人:
- 金额:$ 26.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this proposal is to develop, analyze and implement optimizationalgorithms that integrate multilevel iterative solvers, adaptive mesh refinement methods, and so-called `all-at-once' methods for the solution of optimization problems governed by advection dominated partial differential equations (PDEs). The presence of strong advection in the governing PDE creates many challenges forthe numerical solution of these optimization problems, beyond the challenges alreadyencountered in the numerical simulation of single advection dominated PDEs and beyondthe many difficulties in solving PDE constrained optimization problems with weak or no advection. One reason for the additional challenges arising in the optimization context is the presence of the so-called adjoint equation, which is also an advection dominated PDE, but with advection given by the negative of the advection in the governing equation. This can cause significant and perhaps unexpected differences in the behavior of discretization schemes and iterative solvers when they are extended from the application to single advection dominated PDEs to the solution of PDE constrained optimization problems. This research will analyze the sources of these differences, their impact on the quality of computed solutionand on the efficiency of solution algorithms. Another goal is to devise modifications of multilevel iterative solvers, adaptive mesh refinement methods, and so-called KKT solvers tomake them robust against the presence of advection.Many important real-life applications such as the shape optimization of technological devices, the optimal control of systems, and the identification of parameters in environmentalprocesses lead to optimization problems governed by systems of advection dominatedpartial differential equations. This research addresses mathematical and algorithmicissues that are crucial for the reliable and efficient solution of these problems. It will leadto a better theoretical understanding of the solution properties of these optimization problems as well as to new computational tools for their reliable and efficient solution. Furthermore, it will provide training opportunities for students in an important area of computational science.
该提案的目的是开发,分析和实施optimizationalgorithms,集成多级迭代求解器,自适应网格细化方法,以及所谓的“一次性”方法,用于解决由对流主导的偏微分方程(PDE)的优化问题。强平流的存在下,在执政的PDE创造了许多挑战,为这些优化问题的数值解,超越了挑战已经遇到的数值模拟单平流为主的PDE和超越了许多困难,在求解PDE约束优化问题,弱或没有平流。在优化上下文中出现的额外挑战的一个原因是存在所谓的伴随方程,其也是平流主导的PDE,但是平流由控制方程中的平流的负值给出。这可能会导致显着的,也许是意想不到的差异,离散化方案和迭代求解器的行为时,他们从应用程序扩展到单对流主导偏微分方程的偏微分方程约束优化问题的解决方案。 本研究将分析这些差异的来源,它们对计算解的质量和求解算法的效率的影响。另一个目标是设计多层迭代求解器的修改,自适应网格细化方法,以及所谓的KKT求解器,使它们对平流的存在具有鲁棒性。许多重要的实际应用,如技术设备的形状优化,系统的最优控制,环境过程中参数的识别导致了由对流主导的偏微分方程系统所支配的优化问题。这项研究解决了这些问题的可靠和有效的解决方案是至关重要的数学和算法问题。这将导致更好的理论理解这些优化问题的解决方案的性质,以及新的计算工具,其可靠和有效的解决方案。此外,它将为学生提供计算科学重要领域的培训机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthias Heinkenschloss其他文献
Sensitivity Technologies for Large Scale Simulation
大规模仿真的灵敏度技术
- DOI:
10.2172/921606 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
S. Collis;R. Bartlett;Thomas Michael Smith;Matthias Heinkenschloss;Lucas C. Wilcox;Judith C. Hill;Omar Ghattas;Martin Olof Berggren;V. Akçelik;C. Ober;B. van Bloemen Waanders;E. Keiter - 通讯作者:
E. Keiter
g Institut für Mathematik
g 数学研究所
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Harbir Antil;Matthias Heinkenschloss;Ronald H. W. Hoppe;Danny C. Sorensen - 通讯作者:
Danny C. Sorensen
Interpolatory model reduction of quadratic-bilinear dynamical systems with quadratic-bilinear outputs
具有二次双线性输出的二次双线性动力系统的插值模型简化
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1.7
- 作者:
Alejandro N. Diaz;Matthias Heinkenschloss;I. V. Gosea;A. Antoulas - 通讯作者:
A. Antoulas
Matthias Heinkenschloss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthias Heinkenschloss', 18)}}的其他基金
Novel Multiple-Shooting Algorithms for Optimization Governed by Time-Dependent Partial Differential Equations
时相关偏微分方程控制的新型多重射击优化算法
- 批准号:
1819144 - 财政年份:2018
- 资助金额:
$ 26.48万 - 项目类别:
Standard Grant
Numerical Solution of Constrained Optimization Problems Governed by Partial Differential Equations with Uncertain Parameters
参数不确定的偏微分方程约束优化问题的数值求解
- 批准号:
1522798 - 财政年份:2015
- 资助金额:
$ 26.48万 - 项目类别:
Continuing Grant
Collaborative Research: Reduced Order Model Approaches for Time Dependent Nonlinear PDE Constrained Optimization
协作研究:用于瞬态非线性 PDE 约束优化的降阶模型方法
- 批准号:
1115345 - 财政年份:2011
- 资助金额:
$ 26.48万 - 项目类别:
Standard Grant
Collaborative Research: Multigrid Methods for PDE Constrained Optimization
协作研究:偏微分方程约束优化的多重网格方法
- 批准号:
0511624 - 财政年份:2005
- 资助金额:
$ 26.48万 - 项目类别:
Continuing Grant
ITR/AP COLLABORATIVE RESEARCH: Real Time Optimization for Data Assimilation and Control of Large Scale Dynamic Simulations
ITR/AP 合作研究:大规模动态模拟数据同化和控制的实时优化
- 批准号:
0121360 - 财政年份:2001
- 资助金额:
$ 26.48万 - 项目类别:
Standard Grant
Optimization of Parabolic Systems: Iterative Methods, Suboptimal Controls, and Preconditioning
抛物线系统的优化:迭代方法、次优控制和预处理
- 批准号:
0075731 - 财政年份:2000
- 资助金额:
$ 26.48万 - 项目类别:
Standard Grant
Mathematical Sciences Scientific Computing Research Environments
数学科学科学计算研究环境
- 批准号:
9872009 - 财政年份:1998
- 资助金额:
$ 26.48万 - 项目类别:
Standard Grant
Mathematical Sciences: Optimization Methods for Optimal Control and Parameter Identification Problems
数学科学:最优控制和参数辨识问题的优化方法
- 批准号:
9403699 - 财政年份:1994
- 资助金额:
$ 26.48万 - 项目类别:
Standard Grant
相似国自然基金
相似海外基金
A mobile health solution in combination with behavioral change approach to improve vaccination coverage and timeliness in Bangladesh: A cluster randomized control trial
移动健康解决方案与行为改变方法相结合,以提高孟加拉国的疫苗接种覆盖率和及时性:集群随机对照试验
- 批准号:
24K20168 - 财政年份:2024
- 资助金额:
$ 26.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Sustainable solution for cooling application
冷却应用的可持续解决方案
- 批准号:
10089491 - 财政年份:2024
- 资助金额:
$ 26.48万 - 项目类别:
Collaborative R&D
Low Carbon Impact AI-Enabled Net Zero Advisory Solution
低碳影响人工智能支持的净零咨询解决方案
- 批准号:
10112272 - 财政年份:2024
- 资助金额:
$ 26.48万 - 项目类别:
SME Support
SBIR Phase II: Zero Trust Solution for Precision Medicine and Precision Health Data Exchanges
SBIR 第二阶段:精准医疗和精准健康数据交换的零信任解决方案
- 批准号:
2226026 - 财政年份:2024
- 资助金额:
$ 26.48万 - 项目类别:
Cooperative Agreement
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
$ 26.48万 - 项目类别:
Standard Grant
Knowledge Distillation empowered Mobile Intelligence Solution for Sustainable Management of Crop Pests and Soil Health
知识蒸馏赋能移动智能解决方案,实现农作物病虫害和土壤健康的可持续管理
- 批准号:
10092051 - 财政年份:2024
- 资助金额:
$ 26.48万 - 项目类别:
Collaborative R&D
Barking up the right trees – A microbial solution for our methane problem
树皮正确 — 解决甲烷问题的微生物解决方案
- 批准号:
DE240100338 - 财政年份:2024
- 资助金额:
$ 26.48万 - 项目类别:
Discovery Early Career Researcher Award
Towards an Explainable, Efficient, and Reliable Federated Learning Framework: A Solution for Data Heterogeneity
迈向可解释、高效、可靠的联邦学习框架:数据异构性的解决方案
- 批准号:
24K20848 - 财政年份:2024
- 资助金额:
$ 26.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Sustainable Remanufacturing solution with increased automation and recycled content in laser and plasma based process (RESTORE)
可持续再制造解决方案,在基于激光和等离子的工艺中提高自动化程度和回收内容(RESTORE)
- 批准号:
10112149 - 财政年份:2024
- 资助金额:
$ 26.48万 - 项目类别:
EU-Funded
Enviro: a novel colouring solution to unlock sustainable lightweight advanced composite materials
Enviro:一种新颖的着色解决方案,可释放可持续的轻质先进复合材料
- 批准号:
10093708 - 财政年份:2024
- 资助金额:
$ 26.48万 - 项目类别:
Collaborative R&D