Multimillion-Atom Molecular Dynamics Simulations of Superhard Nanocrystalline Ceramics

超硬纳米晶陶瓷的数百万原子分子动力学模拟

基本信息

  • 批准号:
    0512228
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-08-15 至 2008-07-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL EXPLANATION:The Division of Materials Research and the Division of Mathematical Sciences contribute funding to this award which falls under the NSF-wide Mathematical Sciences Priority Area. This award supports computational and theoretical research and education seeking to elucidate the atomistic mechanisms of fracture and plasticity in nanocrystalline ceramics. Nanostructured silicon carbide (n-SiC) has high fracture toughness and diamond-SiC nanocomposites (n-C-SiC) have high hardness. Grain boundaries (GBs) play a crucial role in the deformation of nanocrystalline metals. The interfaces between the diamond nanoparticles and the SiC matrix in the n-C-SiC likely play a critical role in determining mechanical properties. The PI will perform multimillion-atom MD simulations of nanoindentation and fracture in n-SiC and n-C-SiC on parallel computers to understand atomistic mechanisms underlying high hardness and toughness. The PI plans to: Characterize the nucleation and kinetics of defects in response to mechanical loading. Determine the role of GB and bulk deformation. Identify the effect of GB structures (e.g., twin boundaries), GB diffusion and sliding, as well as of interfacial debonding on hardness and fracture toughness. The PI will also plans to develop and implement: Innovative data mining techniques, such as graph-based algorithms, to identify and track topological defects in the resulting massive multivariate datasets. A hybrid simulation scheme based on temperature accelerated MD, reconstruction of the potential energy landscape, and reaction path sampling to study rare events such as GB diffusion.The research program will be integrated with training and education activities. These include: 1) multidisciplinary training of undergraduate and graduate students involving both atomistic simulations and nano-experiments, 2) developing a course on "advanced simulations of materials at nanoscale", as part of the interdisciplinary degree of Materials Science Program and the new degree options in ComputationalScience and Nanoengineering in the Engineering Physics Department at the University of Wisconsin, (3) facilitating a cross-departmental curriculum in scientific modeling, and (4) developing campus-wide atomic-modeling seminar.NON-TECHNICAL EXPLANATION:The Division of Materials Research and the Division of Mathematical Sciences contribute funding to this award which falls under the NSF-wide Mathematical Sciences Priority Area. This award supports computational and theoretical research that seeks to understand how ceramic materials fracture and deform starting from the constituent atoms. The PI will focus on ceramic materials that are composed of many nanometer-sized grains. The PI will use large-scale computer simulation techniques involving millions of atoms with the aim of understanding how the hardness of specific materials depends on the size of the grains, how these materials deform when a mechanical stress is applied, and ultimately how to create a material that is both hard and highly resistant to fracture. The proposed research may have impact on the design and nanoengineering of superhard materials that have a broad range of applications. The proposed research also involves developing advanced computational tools including methods to enable simulation for long times and to identify specific arrangements of atoms involved in materials deformation. The research program will be integrated with training and education activities. These include the direct involvement of a graduate student in the research and developing interdisciplinary graduate and undergraduate level courses on advanced computer modeling of materials.
技术说明:材料研究部和数学科学部为该奖项提供资金,该奖项属于NSF范围内的数学科学优先领域。该奖项支持旨在阐明纳米晶体陶瓷断裂和塑性的原子机制的计算和理论研究和教育。纳米碳化硅(n-SiC)具有高的断裂韧性,金刚石-SiC纳米复合材料(n-C-SiC)具有高的硬度。晶界在纳米晶金属的变形过程中起着至关重要的作用。n-C-SiC中金刚石纳米颗粒和SiC基体之间的界面可能在决定机械性能方面起关键作用。PI将在并行计算机上对n-SiC和n-C-SiC中的纳米压痕和断裂进行数百万原子的MD模拟,以了解高硬度和韧性的原子机制。PI计划:表征响应机械负载的缺陷成核和动力学。确定国标的作用和体积变形.确定GB结构的影响(例如,孪晶界)、晶界扩散和滑移以及界面脱粘对硬度和断裂韧性的影响。PI还将计划开发和实施:创新的数据挖掘技术,如基于图的算法,以识别和跟踪由此产生的大量多元数据集中的拓扑缺陷。基于温度加速分子动力学的混合模拟方案,势能景观的重建和反应路径采样,以研究GB扩散等罕见事件。研究计划将与培训和教育活动相结合。其中包括:1)涉及原子模拟和纳米实验的本科生和研究生的多学科培训,2)开发关于"纳米级材料的高级模拟"的课程,作为材料科学课程的跨学科学位的一部分,以及威斯康星州大学工程物理系计算科学和纳米工程的新学位选择,(3)促进跨部门的科学建模课程,(4)开发校园范围内的原子建模研讨会。非技术解释:材料研究部和数学科学部为该奖项提供资金,该奖项属于NSF范围内的数学科学优先领域。该奖项支持旨在了解陶瓷材料如何从组成原子开始断裂和变形的计算和理论研究。PI将专注于由许多纳米颗粒组成的陶瓷材料。PI将使用涉及数百万个原子的大规模计算机模拟技术,目的是了解特定材料的硬度如何取决于晶粒的大小,当施加机械应力时这些材料如何变形,以及最终如何创建一种既硬又高抗断裂性的材料。拟议的研究可能会对具有广泛应用的超硬材料的设计和纳米工程产生影响。拟议的研究还涉及开发先进的计算工具,包括能够长时间模拟的方法,以及识别材料变形中涉及的原子的特定排列。研究计划将与培训和教育活动相结合。这些包括研究生直接参与研究和开发跨学科的研究生和本科生水平的先进计算机建模材料课程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Izabela Szlufarska其他文献

Best practices for fitting machine learning interatomic potentials for molten salts: A case study using NaCl-MgCl<sub>2</sub>
  • DOI:
    10.1016/j.commatsci.2024.113409
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Siamak Attarian;Chen Shen;Dane Morgan;Izabela Szlufarska
  • 通讯作者:
    Izabela Szlufarska
Single hot contacts
单个热触点
  • DOI:
    10.1038/nmat3506
  • 发表时间:
    2012-12-18
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Yifei Mo;Izabela Szlufarska
  • 通讯作者:
    Izabela Szlufarska
An atomistic study of plastic deformation of SmCo<sub>5</sub> by amorphous shear bands
  • DOI:
    10.1016/j.mtcomm.2023.106002
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Niuniu Wang;Hubin Luo;Lei Liu;Yong Ding;Renjie Chen;Xiangyu Zhang;Xiaohong Yao;Izabela Szlufarska;Aru Yan
  • 通讯作者:
    Aru Yan
Influence of transmutation products on the thermophysical properties of eutectic NaCl-UClsub3/sub fuel salt in a fast-spectrum molten salt reactor
嬗变产物对快谱熔盐堆中共晶 NaCl-UCl₃燃料盐热物理性质的影响
  • DOI:
    10.1016/j.jnucmat.2024.155572
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Sudipta Paul;Siamak Attarian;Massimiliano Fratoni;Dane Morgan;Izabela Szlufarska
  • 通讯作者:
    Izabela Szlufarska
Strain rate effects on shear-band behavior in the Al-Sm system
  • DOI:
    10.1016/j.actamat.2024.120632
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nuohao Liu;Xuanxin Hu;Jizhe Cai;Ranran Su;Ramathasan Thevamaran;Hongliang Zhang;John H. Perepezko;Izabela Szlufarska
  • 通讯作者:
    Izabela Szlufarska

Izabela Szlufarska的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Izabela Szlufarska', 18)}}的其他基金

Collaborative Research: Experiments and Simulations at the Nexus of Geophysics, Chemistry, Materials Science and Mechanics to Determine the Physical Basis for Rate-State Friction
合作研究:结合地球物理学、化学、材料科学和力学来确定速率状态摩擦的物理基础的实验和模拟
  • 批准号:
    1951314
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Multidiscilpinary Study to Determine the Fundamental Mechanisms of Rock Friction through Coordinated Experiments and Simulations
协作研究:通过协调实验和模拟确定岩石摩擦基本机制的多学科研究
  • 批准号:
    1549153
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Friction and aging of silica: atomistic simulations for fundamental understanding of earthquake mechanics
二氧化硅的摩擦和老化:原子模拟有助于基本了解地震力学
  • 批准号:
    0910779
  • 财政年份:
    2009
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Molecular Basis for Viscoelastic Response on Nano-Mechanical Biosensors
职业:纳米机械生物传感器粘弹性响应的分子基础
  • 批准号:
    0747661
  • 财政年份:
    2008
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

1keV/atom以下的团簇离子注入固体极浅表面的过程研究
  • 批准号:
    11075076
  • 批准年份:
    2010
  • 资助金额:
    42.0 万元
  • 项目类别:
    面上项目

相似海外基金

A Photochemical CO2 Reduction Over Supported Single Atom Catalyst: A Knowledge Driven Approach From Molecular to Heterogeneous Catalysis
负载单原子催化剂上的光化学二氧化碳还原:从分子催化到多相催化的知识驱动方法
  • 批准号:
    EP/X024822/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Fellowship
CAS: Synthesis and Reactivity of Oxygen-atom Vacancies in Molecular Vanadium Oxide Assemblies
CAS:氧化钒分子组装体中氧原子空位的合成和反应性
  • 批准号:
    2154727
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Molecular and isotopic characterization of Earth's oldest organic materials using Atom Probe Tomography
使用原子探针断层扫描技术对地球最古老的有机材料进行分子和同位素表征
  • 批准号:
    20KK0081
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
The molecular study of lipid membrane curvature generation and sustainment mechanisms using all-atom and ultra-coarse-grained simulations.
使用全原子和超粗粒度模拟对脂质膜曲率生成和维持机制进行分子研究。
  • 批准号:
    10026319
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
Improving Coarse-Grained Molecular Models through the Combination of All-Atom Models and Machine Learning Methods
通过全原子模型和机器学习方法的结合改进粗粒度分子模型
  • 批准号:
    19K06535
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
From Atom to Device: Multi-scaled Simulations on Molecular-based Electronic Devices
从原子到设备:基于分子的电子设备的多尺度模拟
  • 批准号:
    2280676
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Studentship
Study for the violation mechanism of fundamental symmetry using the cold atom/molecular interferometer with optical lattice
利用光晶格冷原子/分子干涉仪研究基本对称性破坏机制
  • 批准号:
    19H05601
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Real-time and real-space visualization of super-atom molecular orbital (SAMO)
超原子分子轨道(SAMO)实时、实空间可视化
  • 批准号:
    19K05182
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RUI: Investigation of the structure and dynamics of type IV pilus filaments using all-atom and coarse-grained molecular dynamics
RUI:利用全原子和粗粒分子动力学研究 IV 型菌毛丝的结构和动力学
  • 批准号:
    1817670
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Surface electronic structures of molecular clusters studied by atom impact ionization
原子碰撞电离研究分子簇表面电子结构
  • 批准号:
    16K05645
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了