Efficient Spatial-Temporal Analysis of Environment and Public Health Related Data

环境和公共卫生相关数据的高效时空分析

基本信息

  • 批准号:
    0513669
  • 负责人:
  • 金额:
    $ 39.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-01 至 2009-08-31
  • 项目状态:
    已结题

项目摘要

ABSTRACTNSF-0513669Wu, WeiliEnvironment and public health related data belong to the same category of spatial-temporal data, which contain spatial information about the geographic location and temporal feature of an object in addition to the conventional attribute information describing the object's characteristics. Efficient techniques for analyzing information from the environment and public health related data, the focus of this proposed work, are crucial to organizations, which make decisions based on large spatial-temporal data sets. The applications of efficient models can be found useful in environment conservation and public health. Traditional data analysis and data mining techniques, which do not model spatial context and temporal effect, may lead to residual errors that vary systematically over space and time. The models derived may turn out to be not only biased and inconsistent, but may also be a poor fit to the data set. The traditional approaches towards solving spatial data analysis are to use classical data analysis tools by using spatial lag or error as one of explanatory variables. These techniques maximize classification accuracy, but spatial accuracy may be of more importance. Temporal and attribute accuracies are ignored in most of these predictive models. In addition, these approaches are often computationally expensive and are confounded with a large datasets.A new computationally efficient spatial-temporal framework, ST-PUMS (Spatial-temporalPrediction Using Map Similarity), which maximize map similarity (including spatial similarity, temporal similarity, and attribute similarity) instead of classification/prediction accuracy was proposed. This work addresses how spatial-temporal autocorrelation, the characteristic property of spatial-temporal data, can be incorporated in the ST-PUMS framework. ST-PUMS framework searches the parameter space of models using a new map-similarity measure that is more appropriate in the context of spatial-temporal data. In addition to modeling spatial accuracy, ST-PUMS can also be extended to incorporate temporal and attribute accuracies in the model. ST-PUMS will provide a solution for the difficulties encountered in analyzing spatial-temporaldata. It is able to cope with multidimensional (i.e., spatial, attribute, temporal, etc.) environment and public health related data with complex data structure, and to achieve high efficiency with large volumes of data.New techniques of the efficient spatial-temporal analysis of environment and public health related data are profound. The proposed framework consists of basic theoretical research as well as rigorous empirical studies to validate all the concepts. The experiments will be driven by a series of increasingly sophisticated case studies, including habitat estimation for bird flu investigation, and asthma hospital admission predictions. The solutions will have a direct impact on several important areas, such as environmental conservation, criminology and justice, real estate management and environmental epidemiology. The concepts, designs, algorithms and strategies are devised to analyze the multiple-dimensional, auto-correlative, large-size spatial-temporal data. The proposed research may also have broad impacts on other natural and social sciences that could take the advantages offered by varieties of spatial-temporal data.
环境数据与公共卫生数据属于同一时空数据范畴,它们除了包含描述对象特征的常规属性信息外,还包含对象的地理位置和时间特征的空间信息。有效的技术,分析信息的环境和公共卫生相关的数据,这项拟议的工作的重点,是至关重要的组织,决策的基础上大型时空数据集。有效模型的应用可以在环境保护和公共卫生方面得到应用。传统的数据分析和数据挖掘技术没有对空间背景和时间效应进行建模,可能会导致在空间和时间上系统地变化的残差。得出的模型可能不仅有偏见和不一致,而且可能与数据集拟合不佳。解决空间数据分析的传统方法是使用经典的数据分析工具,将空间滞后或误差作为解释变量之一。这些技术最大化分类精度,但空间精度可能更重要。在大多数这些预测模型中,时间和属性精度被忽略。提出了一种新的时空预测框架ST-STFS(Spatial-temporalPrediction Using Map Similarity),该框架以最大化地图相似度(包括空间相似度、时间相似度和属性相似度)代替分类/预测精度。这项工作解决了如何时空自相关,时空数据的特性,可以被纳入ST-EADS框架。ST-STFS框架使用一种新的映射相似性度量来搜索模型的参数空间,该度量更适合于时空数据的上下文。除了建模空间精度,ST-REXS还可以扩展到在模型中包含时间和属性精度。ST-STRS将为时空数据分析中遇到的困难提供一个解决方案。它能够科普多维(即,空间、属性、时间等)环境与公共卫生相关数据结构复杂,数据量大,如何实现高效的时空分析,是环境与公共卫生相关数据时空分析的关键技术。所提出的框架包括基本的理论研究以及严格的实证研究,以验证所有的概念。这些实验将由一系列日益复杂的案例研究驱动,包括禽流感调查的栖息地估计和哮喘医院入院预测。这些解决办法将对环境保护、犯罪学和司法、真实的房地产管理和环境流行病学等几个重要领域产生直接影响。提出了多维、自相关、大规模时空数据分析的概念、设计、算法和策略。拟议的研究也可能对其他自然和社会科学产生广泛的影响,这些科学可以利用各种时空数据所提供的优势。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weili Wu其他文献

Using multi-features to recommend friends on location-based social networks
使用多功能在基于位置的社交网络上推荐朋友
Relationship between G-CSF and hyperleukocytosis in patients with APL after treatment with all-trans retinoic acid
全反式维A酸治疗后APL患者G-CSF与白细胞增多的关系
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Jiang;T. Tang;Guan;Yu;Wen Wu;Weili Wu;H. Ren;Liang
  • 通讯作者:
    Liang
Rumor Blocking in Social Networks
社交网络中的谣言拦截
  • DOI:
    10.1007/978-3-030-37775-5_4
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wen Xu;Weili Wu
  • 通讯作者:
    Weili Wu
Community Expansion Model Based on Charged System Theory
基于带电系统理论的社区扩展模型

Weili Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weili Wu', 18)}}的其他基金

SPX: Collaborative Research: Enabling Efficient Computer Architectural and System Support for Next-Generation Network Function Virtualization
SPX:协作研究:为下一代网络功能虚拟化提供高效的计算机架构和系统支持
  • 批准号:
    1822985
  • 财政年份:
    2018
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Standard Grant
EAGER: Harnessing the Power of Graph Data Analytics
EAGER:利用图数据分析的力量
  • 批准号:
    1747818
  • 财政年份:
    2017
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Undersea Sensor Networks for Intrusion Detection: Foundations and Practice
NeTS:小型:协作研究:用于入侵检测的海底传感器网络:基础与实践
  • 批准号:
    1016320
  • 财政年份:
    2010
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Standard Grant
TF-SING: Collaborative Research: Reliable Spatial-Temporal Coverage with Minimum Cost in Wireless Sensor Network Deployments
TF-SING:协作研究:以最低成本实现无线传感器网络部署的可靠时空覆盖
  • 批准号:
    0829993
  • 财政年份:
    2008
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Standard Grant
Collaborative Research: KEYING SUITE - A Protocol Library for Key Establishment in Sensor Networks
合作研究:KEYING SUITE - 用于传感器网络中密钥建立的协议库
  • 批准号:
    0627233
  • 财政年份:
    2007
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Standard Grant
SGER: Optimization Problems in Next Generation Networks
SGER:下一代网络的优化问题
  • 批准号:
    0750992
  • 财政年份:
    2007
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Standard Grant
CompBio:Collaborative Research: Development of Effective Gene Selection Algorithms for Microarray Data Analysis
CompBio:合作研究:开发用于微阵列数据分析的有效基因选择算法
  • 批准号:
    0621829
  • 财政年份:
    2006
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Continuing Grant
NSG: Studies in Optimizations with Applications
NSG:优化与应用研究
  • 批准号:
    0514796
  • 财政年份:
    2005
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Standard Grant
Collaborative Research: CT-ISG: Fault-Tolerant and Secure Infrastructure for Time Critical Embedded Systems
合作研究:CT-ISG:时间关键嵌入式系统的容错和安全基础设施
  • 批准号:
    0524429
  • 财政年份:
    2005
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Standard Grant
ALGORITHMS: Collaborative Research:Development of Vector Space based Methods for Protein Structure Prediction
算法:协作研究:基于向量空间的蛋白质结构预测方法的开发
  • 批准号:
    0305567
  • 财政年份:
    2003
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Continuing Grant

相似国自然基金

高铁对欠发达省域国土空间协调(Spatial Coherence)影响研究与政策启示-以江西省为例
  • 批准号:
    52368007
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
高铁影响空间失衡(Spatial Inequality)的多尺度变异机理的理论和实证研究
  • 批准号:
    51908258
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSFDEB-NERC: Spatial and temporal tradeoffs in CO2 and CH4 emissions in tropical wetlands
NSFDEB-NERC:热带湿地二氧化碳和甲烷排放的时空权衡
  • 批准号:
    NE/Z000246/1
  • 财政年份:
    2025
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Research Grant
Development of high temporal and spatial resolution multi-beam CT instrument
高时空分辨率多束CT仪器研制
  • 批准号:
    23K28346
  • 财政年份:
    2024
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320259
  • 财政年份:
    2024
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Standard Grant
SBIR Phase I: Subtractive-waveguide based Display for Augmented Reality Smart Glasses using Spatial-temporal Multiplexed Single-CMOS Panels
SBIR 第一阶段:使用时空复用单 CMOS 面板的基于减法波导的增强现实智能眼镜显示器
  • 批准号:
    2335927
  • 财政年份:
    2024
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320260
  • 财政年份:
    2024
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Standard Grant
Spatial and Temporal Airflow Mechanism Regarding Transient Aerodynamics of a Supersonic Aircraft Configuration with a Cranked-Arrow Main Wing
曲柄箭头主翼超音速飞机瞬态空气动力学的时空气流机制
  • 批准号:
    23K04228
  • 财政年份:
    2023
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSFDEB-NERC: Machine learning tools to discover balancing selection in genomes from spatial and temporal autocorrelations
NSFDEB-NERC:机器学习工具,用于从空间和时间自相关中发现基因组中的平衡选择
  • 批准号:
    NE/Y003519/1
  • 财政年份:
    2023
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Research Grant
Quantifying spatial and temporal patterns of natural disturbances in forests across Japan: Mapping disturbance regimes by satellite images
量化日本各地森林自然扰动的时空模式:通过卫星图像绘制扰动区域图
  • 批准号:
    23K19303
  • 财政年份:
    2023
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Exploring Frontiers on applying CubeSat images with very high spatial and temporal resolutions to remotely estimate species-level tree phenology
探索应用具有极高空间和时间分辨率的 CubeSat 图像远程估计物种级树木物候的前沿
  • 批准号:
    23K18517
  • 财政年份:
    2023
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Photothermal Catalysis: Using light to thermally generate reactive intermediates with temporal and spatial control
光热催化:利用光热生成具有时间和空间控制的反应中间体
  • 批准号:
    10713733
  • 财政年份:
    2023
  • 资助金额:
    $ 39.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了