ALGORITHMS: Collaborative Research:Development of Vector Space based Methods for Protein Structure Prediction

算法:协作研究:基于向量空间的蛋白质结构预测方法的开发

基本信息

  • 批准号:
    0305567
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-07-01 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

What is novel and unique in this proposed research is the proposed design of knowledge-based prediction systems based on optimal vector space representations of proteins that have previously been represented by character strings. If an optimal representation of a character string can be found by a numerical sequence, then a great variety of methodologies from disciplines such as optimization, pattern discovery, and machine learning can be readily applied to new understanding of protein tertiary structure and function.For this, kernel based nonlinear classifiers and nonlinear dimension reduction as well as visualization methods will be developed to provide scalable and elective prediction systems.The prediction systems will be specially tailored for several problems related to protein structure discovery such as protein secondary structure, relative solvent accessibility and disulfide connectivity, as well as prediction of protein-protein interaction. In this proposal the P.I.s describe how they intend to accomplish this, so that their preliminary results can be extended to the more general structure and protein-protein interaction prediction problem. All results obtained will be made available to the research community in order to facilitate further research activity. Using existing web servers, the results will be made available to teaching faculty and graduate and undergraduate students in a suitable tutorial form. This will allow those interested to tailor the material for use in graduate and undergraduate research and class projects. The authors will incorporate the results into current and future course material as well.Special efforts will be made by the two women PIs to provide opportunities for womengraduate students to participate in the proposed research and for development of therelated software, which has long range social impact beyond the scientific results.
这项研究的新颖和独特之处在于,提出了基于知识的预测系统的设计,该系统基于蛋白质的最佳向量空间表示,而蛋白质以前是由字符串表示的。如果可以通过数字序列找到字符串的最佳表示,那么来自优化、模式发现和机器学习等学科的各种方法可以很容易地应用于对蛋白质三级结构和功能的新理解。为此,将开发基于核的非线性分类器和非线性降维以及可视化方法,以提供可扩展和可选的预测系统。该预测系统将专门针对与蛋白质结构发现相关的几个问题,如蛋白质二级结构、相对溶剂可及性和二硫化物连通性,以及蛋白质-蛋白质相互作用的预测。在这一建议中,P.I.s描述了他们打算如何实现这一目标,以便他们的初步结果可以扩展到更一般的结构和蛋白质-蛋白质相互作用预测问题。所有获得的结果将提供给研究界,以促进进一步的研究活动。利用现有的网络服务器,研究结果将以合适的指导形式提供给教师、研究生和本科生。这将允许那些有兴趣的人定制材料,用于研究生和本科生的研究和课堂项目。作者也将把结果纳入当前和未来的课程材料中。两位女pi将作出特别努力,为女研究生提供参与拟议研究和相关软件开发的机会,这些研究和开发具有超越科学成果的长期社会影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weili Wu其他文献

Using multi-features to recommend friends on location-based social networks
使用多功能在基于位置的社交网络上推荐朋友
Relationship between G-CSF and hyperleukocytosis in patients with APL after treatment with all-trans retinoic acid
全反式维A酸治疗后APL患者G-CSF与白细胞增多的关系
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Jiang;T. Tang;Guan;Yu;Wen Wu;Weili Wu;H. Ren;Liang
  • 通讯作者:
    Liang
Rumor Blocking in Social Networks
社交网络中的谣言拦截
  • DOI:
    10.1007/978-3-030-37775-5_4
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wen Xu;Weili Wu
  • 通讯作者:
    Weili Wu
Community Expansion Model Based on Charged System Theory
基于带电系统理论的社区扩展模型

Weili Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weili Wu', 18)}}的其他基金

SPX: Collaborative Research: Enabling Efficient Computer Architectural and System Support for Next-Generation Network Function Virtualization
SPX:协作研究:为下一代网络功能虚拟化提供高效的计算机架构和系统支持
  • 批准号:
    1822985
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: Harnessing the Power of Graph Data Analytics
EAGER:利用图数据分析的力量
  • 批准号:
    1747818
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Undersea Sensor Networks for Intrusion Detection: Foundations and Practice
NeTS:小型:协作研究:用于入侵检测的海底传感器网络:基础与实践
  • 批准号:
    1016320
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
TF-SING: Collaborative Research: Reliable Spatial-Temporal Coverage with Minimum Cost in Wireless Sensor Network Deployments
TF-SING:协作研究:以最低成本实现无线传感器网络部署的可靠时空覆盖
  • 批准号:
    0829993
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: KEYING SUITE - A Protocol Library for Key Establishment in Sensor Networks
合作研究:KEYING SUITE - 用于传感器网络中密钥建立的协议库
  • 批准号:
    0627233
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SGER: Optimization Problems in Next Generation Networks
SGER:下一代网络的优化问题
  • 批准号:
    0750992
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CompBio:Collaborative Research: Development of Effective Gene Selection Algorithms for Microarray Data Analysis
CompBio:合作研究:开发用于微阵列数据分析的有效基因选择算法
  • 批准号:
    0621829
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Efficient Spatial-Temporal Analysis of Environment and Public Health Related Data
环境和公共卫生相关数据的高效时空分析
  • 批准号:
    0513669
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSG: Studies in Optimizations with Applications
NSG:优化与应用研究
  • 批准号:
    0514796
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: CT-ISG: Fault-Tolerant and Secure Infrastructure for Time Critical Embedded Systems
合作研究:CT-ISG:时间关键嵌入式系统的容错和安全基础设施
  • 批准号:
    0524429
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347322
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402283
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347321
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402284
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Adventures in Flatland: Algorithms for Modern Memories
合作研究:AF:媒介:平地历险记:现代记忆算法
  • 批准号:
    2423105
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
  • 批准号:
    2312872
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Random Matrices and Algorithms in High Dimension
合作研究:高维随机矩阵和算法
  • 批准号:
    2306438
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: SLES: Safe Distributional-Reinforcement Learning-Enabled Systems: Theories, Algorithms, and Experiments
协作研究:SLES:安全的分布式强化学习系统:理论、算法和实验
  • 批准号:
    2331781
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了