SPX: Collaborative Research: Enabling Efficient Computer Architectural and System Support for Next-Generation Network Function Virtualization

SPX:协作研究:为下一代网络功能虚拟化提供高效的计算机架构和系统支持

基本信息

  • 批准号:
    1822985
  • 负责人:
  • 金额:
    $ 46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Network Function Virtualization (NFV) has been widely adopted by telecommunication and internet service providers for greater performance, flexibility, and adaptability, and is treated as the most promising technology for the upcoming fifth generation (5G) wireless networks. However, ensuring that consolidated next-generation NFV workloads can efficiently run on current, commercially available servers and systems while maintaining optimal server/network utilization remains a challenge. The main reason is that existing solutions only serve as layer-specific optimizations. Due to the loose-coupled optimizations across the system and architectural layers, these solutions lack the holistic and synergistic view to guarantee the performance, resilience, and elasticity posed by the features of 5G NFV. This project aims to optimize the efficiency of consolidation of 5G NFV on commercially available server architectures and systems. The contributions of this project are: (1) rethinking the mechanisms employed in various layers of current NFV deployment and optimization, and (2) re-architecting the abstractions between the layers and applications. The impacts of this project will open the door for a new class of efficient scalable computing platforms for next-generation NFV in the 5G era. This project will also contribute to society through engaging under-represented groups, research infrastructure/tools/benchmarks dissemination for education and training, and technology transfer to industries.This project proposes to develop: system-wide profiling tools and an automatic, architectural statistics-aware NFV workloads orchestration and benchmarking framework; new techniques that allow NFV applications to leverage virtualized graphic processing units (GPU), and that improve the scheduling of data movement between GPU and smart network interface cards (NICs); new abstractions that allow NFV applications and building blocks to leverage emerging offloading techniques (e.g. smart NIC and GPU remote direct memory access) and a novel architecture to improve the consolidation efficiency, parallelism, and scalability; and novel algorithms and abstractions for operating systems and accelerators to improve the thread, cache and memory management and cross-layer parallelism.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络功能虚拟化 (NFV) 已被电信和互联网服务提供商广泛采用,以提高性能、灵活性和适应性,并被视为即将到来的第五代 (5G) 无线网络最有前途的技术。然而,确保整合的下一代 NFV 工作负载能够在当前的商用服务器和系统上高效运行,同时保持最佳的服务器/网络利用率仍然是一个挑战。主要原因是现有的解决方案仅起到特定层的优化作用。由于跨系统和架构层的松耦合优化,这些解决方案缺乏整体和协同的视角来保证 5G NFV 特性带来的性能、弹性和弹性。该项目旨在优化 5G NFV 在商用服务器架构和系统上的整合效率。该项目的贡献是:(1) 重新思考当前 NFV 部署和优化的各个层中采用的机制,以及 (2) 重新架构层和应用程序之间的抽象。该项目的影响将为 5G 时代的下一代 NFV 开启新型高效可扩展计算平台的大门。该项目还将通过吸引代表性不足的群体、教育和培训研究基础设施/工具/基准传播以及向行业转让技术来为社会做出贡献。该项目建议开发:全系统分析工具以及自动的、架构统计感知的 NFV 工作负载编排和基准测试框架;新技术允许 NFV 应用程序利用虚拟化图形处理单元 (GPU),并改进 GPU 和智能网络接口卡 (NIC) 之间的数据移动调度;新的抽象允许 NFV 应用程序和构建块利用新兴的卸载技术(例如智能 NIC 和 GPU 远程直接内存访问)和新颖的架构来提高整合效率、并行性和可扩展性;操作系统和加速器的新颖算法和抽象,以改善线程、缓存和内存管理以及跨层并行性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Characterizing and Understanding the Architectural Implications of Cloudnative Edge NFV Workloads
An FPGA Implementation of Stochastic Computing-Based LSTM
Understanding and Tackling the Hidden Memory Latency for Edge-based Heterogeneous Platform
了解并解决基于边缘的异构平台的隐藏内存延迟
ToupleGDD: A Fine-Designed Solution of Influence Maximization by Deep Reinforcement Learning
Architectural and Cost Implications of the 5G Edge NFV Systems
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weili Wu其他文献

Using multi-features to recommend friends on location-based social networks
使用多功能在基于位置的社交网络上推荐朋友
Rumor Blocking in Social Networks
社交网络中的谣言拦截
  • DOI:
    10.1007/978-3-030-37775-5_4
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wen Xu;Weili Wu
  • 通讯作者:
    Weili Wu
Relationship between G-CSF and hyperleukocytosis in patients with APL after treatment with all-trans retinoic acid
全反式维A酸治疗后APL患者G-CSF与白细胞增多的关系
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Jiang;T. Tang;Guan;Yu;Wen Wu;Weili Wu;H. Ren;Liang
  • 通讯作者:
    Liang
Breach-Free Sleep-Wakeup Scheduling for Barrier Coverage With Heterogeneous Wireless Sensors
  • DOI:
    doi:10.1109/TNET.2018.2867156
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
  • 作者:
    Zhao Zhang;Weili Wu;Jing Yuan;Ding-Zhu Du
  • 通讯作者:
    Ding-Zhu Du

Weili Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weili Wu', 18)}}的其他基金

EAGER: Harnessing the Power of Graph Data Analytics
EAGER:利用图数据分析的力量
  • 批准号:
    1747818
  • 财政年份:
    2017
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Undersea Sensor Networks for Intrusion Detection: Foundations and Practice
NeTS:小型:协作研究:用于入侵检测的海底传感器网络:基础与实践
  • 批准号:
    1016320
  • 财政年份:
    2010
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
TF-SING: Collaborative Research: Reliable Spatial-Temporal Coverage with Minimum Cost in Wireless Sensor Network Deployments
TF-SING:协作研究:以最低成本实现无线传感器网络部署的可靠时空覆盖
  • 批准号:
    0829993
  • 财政年份:
    2008
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Collaborative Research: KEYING SUITE - A Protocol Library for Key Establishment in Sensor Networks
合作研究:KEYING SUITE - 用于传感器网络中密钥建立的协议库
  • 批准号:
    0627233
  • 财政年份:
    2007
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
SGER: Optimization Problems in Next Generation Networks
SGER:下一代网络的优化问题
  • 批准号:
    0750992
  • 财政年份:
    2007
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
CompBio:Collaborative Research: Development of Effective Gene Selection Algorithms for Microarray Data Analysis
CompBio:合作研究:开发用于微阵列数据分析的有效基因选择算法
  • 批准号:
    0621829
  • 财政年份:
    2006
  • 资助金额:
    $ 46万
  • 项目类别:
    Continuing Grant
Efficient Spatial-Temporal Analysis of Environment and Public Health Related Data
环境和公共卫生相关数据的高效时空分析
  • 批准号:
    0513669
  • 财政年份:
    2005
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
NSG: Studies in Optimizations with Applications
NSG:优化与应用研究
  • 批准号:
    0514796
  • 财政年份:
    2005
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Collaborative Research: CT-ISG: Fault-Tolerant and Secure Infrastructure for Time Critical Embedded Systems
合作研究:CT-ISG:时间关键嵌入式系统的容错和安全基础设施
  • 批准号:
    0524429
  • 财政年份:
    2005
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
ALGORITHMS: Collaborative Research:Development of Vector Space based Methods for Protein Structure Prediction
算法:协作研究:基于向量空间的蛋白质结构预测方法的开发
  • 批准号:
    0305567
  • 财政年份:
    2003
  • 资助金额:
    $ 46万
  • 项目类别:
    Continuing Grant

相似海外基金

SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
  • 批准号:
    2408925
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
  • 批准号:
    2401544
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
  • 批准号:
    2412182
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
  • 批准号:
    2318628
  • 财政年份:
    2022
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
  • 批准号:
    2333009
  • 财政年份:
    2022
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: NG4S: A Next-generation Geo-distributed Scalable Stateful Stream Processing System
SPX:合作研究:NG4S:下一代地理分布式可扩展状态流处理系统
  • 批准号:
    2202859
  • 财政年份:
    2022
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Memory Fabric: Data Management for Large-scale Hybrid Memory Systems
SPX:协作研究:内存结构:大规模混合内存系统的数据管理
  • 批准号:
    2132049
  • 财政年份:
    2021
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
  • 批准号:
    2113307
  • 财政年份:
    2020
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
  • 批准号:
    1919117
  • 财政年份:
    2019
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
  • 批准号:
    1918987
  • 财政年份:
    2019
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了