Geometric Arrangements and their Algorithmic Applications
几何排列及其算法应用
基本信息
- 批准号:0514079
- 负责人:
- 金额:$ 44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-15 至 2009-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computational geometry is a major research area in computer science, which aims to design efficient algorithms for problems of geometric nature, which arise in many applications. In this research, the investigators continue their long-term study of basic and applied problems in computational geometry, including motion planning problems in robotics, visibility problems in computer graphics, efficient algorithms for linear programming and other geometric optimization problems. These studies cultivate and expose the rich cross-fertilization between basic research in computational and combinatorial geometry and the various application areas, where problems in one area motivate the study of new basic problems whose solution in turn finds applications in many others. There is a strong connection between the combinatorial, algebraic, and topological analysis of arrangements of geometric objects and the design of corresponding efficient algorithms: often the algorithmic complexity (efficiency) of such an algorithm crucially depends on the size or the degree of freedom (combinatorial or algebraic complexity, resp.) of the arrangement.A major portion of this research is devoted to the study of arrangements of curves and surfaces. Specifically, it studies(1) Combinatorial, topological and algorithmic problems related to substructures (lower envelopes, single cells, zones, levels, vertical decompositions, etc.) in arrangements of surfaces in higher dimensions;(2) Related algorithms in real algebraic geometry for computing connected components, stratifications and the dimension of real semi-algebraic sets.(3) Applications of these results to motion planning in robotics, to various visibility and intersection problems in computer graphics, to generalized Voronoi diagrams in higher dimensions, and to many geometric problems at large; and(4) Combinatorial, topological, and algorithmic problems involving planar arrangements of segments or curves, including graph drawings.This research is expected to have an impact on the interaction between mathematics and computer science in geometry, via the dissemination of its results in major conferences and workshops, the journals that they have been editing, the monographs and surveys that the investigators have been writing, and the numerous graduate students that they have been supervising.
计算几何是计算机科学中的一个重要研究领域,其目的是为几何性质的问题设计有效的算法,这些问题在许多应用中出现。在这项研究中,研究人员继续长期研究计算几何中的基础和应用问题,包括机器人运动规划问题,计算机图形学中的可见性问题,线性规划的有效算法和其他几何优化问题。这些研究培养和暴露在计算和组合几何的基础研究和各种应用领域,其中一个领域的问题激励新的基本问题,其解决方案反过来又发现在许多其他应用程序的研究之间的丰富的交叉施肥。在几何对象的排列的组合、代数和拓扑分析与相应的有效算法的设计之间有着很强的联系:通常这种算法的算法复杂性(效率)关键取决于其大小或自由度(分别是组合或代数复杂性)。本研究的主要部分致力于研究曲线和曲面的排列。具体而言,它研究(1)与子结构(下包络,单细胞,区域,水平,垂直分解等)相关的组合,拓扑和算法问题。(2)真实的代数几何中计算真实的半代数集的连通分支、分层和维数的相关算法。(3)将这些结果应用于机器人的运动规划、计算机图形学中的各种可见性和相交问题、更高维的广义Voronoi图以及许多几何问题;以及(4)涉及段或曲线的平面布置的组合、拓扑和算法问题,包括图形绘制。这项研究预计将对数学和计算机科学在几何学中的相互作用产生影响,通过在主要会议和讲习班上传播其成果,通过他们编辑的期刊,通过调查人员编写的专著和调查,以及通过他们指导的众多研究生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Pollack其他文献
A theorem of ordered duality
- DOI:
10.1007/bf00147331 - 发表时间:
1982-01-01 - 期刊:
- 影响因子:0.500
- 作者:
Jacob E. Goodman;Richard Pollack - 通讯作者:
Richard Pollack
Convexity in Topological Affine Planes
- DOI:
10.1007/s00454-007-1336-5 - 发表时间:
2007-12-12 - 期刊:
- 影响因子:0.600
- 作者:
Raghavan Dhandapani;Jacob E. Goodman;Andreas Holmsen;Richard Pollack;Shakhar Smorodinsky - 通讯作者:
Shakhar Smorodinsky
An asymptotically tight bound on the number of semi-algebraically connected components of realizable sign conditions
- DOI:
10.1007/s00493-009-2357-x - 发表时间:
2009-09-01 - 期刊:
- 影响因子:1.000
- 作者:
Saugata Basu;Richard Pollack;Marie-Françoise Roy - 通讯作者:
Marie-Françoise Roy
Weaving patterns of lines and line segments in space
- DOI:
10.1007/bf01190155 - 发表时间:
1993-06-01 - 期刊:
- 影响因子:0.700
- 作者:
Jànos Pach;Richard Pollack;Emo Welzl - 通讯作者:
Emo Welzl
Richard Pollack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Pollack', 18)}}的其他基金
Geometric Arrangements and their Algorithmic Applications
几何排列及其算法应用
- 批准号:
0830272 - 财政年份:2008
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
2007 Fall Workshop on Computational Geometry
2007 年秋季计算几何研讨会
- 批准号:
0735377 - 财政年份:2007
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
Studies of Geometric Arrangements and their Algorithmic Applications
几何排列及其算法应用研究
- 批准号:
0098246 - 财政年份:2001
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant
Studies of Geometric Algorithms and Their Applications
几何算法及其应用研究
- 批准号:
9732101 - 财政年份:1998
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant
Combinatorial Algorithms in Real Algebraic Geometry
实代数几何中的组合算法
- 批准号:
9711240 - 财政年份:1997
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
Studies of Geometric Algorithms and Their Applicatins
几何算法及其应用研究
- 批准号:
9424398 - 财政年份:1995
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Geometry of Configurations
数学科学:构型几何
- 批准号:
9400293 - 财政年份:1994
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
Combinatorial Algorithms and Real Algebraic Geometry
组合算法和实代数几何
- 批准号:
9402640 - 财政年份:1994
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
Mathematical Sciences: The Geometry of Configurations
数学科学:构型几何
- 批准号:
8501947 - 财政年份:1985
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant
The Geometry of Configurations (Mathematics)
配置的几何(数学)
- 批准号:
8201342 - 财政年份:1982
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
相似海外基金
Wonderful Varieties, Hyperplane Arrangements, and Poisson Representation Theory
奇妙的品种、超平面排列和泊松表示论
- 批准号:
2401514 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant
R-Map - Mapping, understanding, assessing and predicting the effects of remote working arrangements in urban and rural areas
R-Map - 绘制、理解、评估和预测城乡地区远程工作安排的影响
- 批准号:
10106145 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
EU-Funded
Polymorphism in the symmetries of gastric pouch arrangements in the sea anemone Diadumene lineata
海葵胃袋排列对称性的多态性
- 批准号:
22KJ3132 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Experimental study of transverse physical responses induced by vortex-like arrangements of electric dipoles
电偶极子涡旋排列引起的横向物理响应的实验研究
- 批准号:
23K17663 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Discrete structures related to hyperplane arrangements, generalization, deepening, and applications
与超平面排列、泛化、深化和应用相关的离散结构
- 批准号:
23H00081 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Young people's experiences of wellbeing and belonging in the workplace, under hybrid working arrangements post-pandemic
大流行后混合工作安排下年轻人在工作场所的福祉和归属感体验
- 批准号:
2874033 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Studentship
Young people's experiences of wellbeing and belonging in the workplace, under hybrid working arrangements post-pandemic.
大流行后混合工作安排下年轻人在工作场所的福祉和归属感体验。
- 批准号:
2885807 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Studentship
Non-Standard Work Arrangements, Health and Wellbeing Among Hotel Housekeepers
酒店管家的非标准工作安排、健康与福祉
- 批准号:
10592525 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Improving support for LGBTQ+ young people in foster care, informal fostering arrangements and supported lodgings in England
改善英格兰寄养、非正式寄养安排和住宿方面对 LGBTQ 年轻人的支持
- 批准号:
2886429 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Studentship