Geometric Arrangements and their Algorithmic Applications
几何排列及其算法应用
基本信息
- 批准号:0830272
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project AbstractThe algorithmic complexity (efficiency) of many geometric algorithms depends mainly on the size(combinatorial complexity) of the structure to be computed. The Principal Investigators study avariety of problems originating in robotics, computer graphics, cellular networking, bioinformatics,etc., that belong to this category. To bound the complexity of the corresponding structures, theyoften need sophisticated techniques drawn from several branches of mathematics and theoreticalcomputer science. In most cases, the bulk of the work is devoted to the study of arrangements ofcurves and surfaces in Euclidean spaces, which lies at the heart of the field. During the process,they develop important new results in several classical mathematical disciplines ranging from Hellytheory to Tur´an- and Ramsey-type extremal graph theory. Specifically, the PIs are studying:(1) Combinatorial, topological and algorithmic problems related to structures in arrangements(lower envelopes and cells, levels, vertical decompositions, incidences with points, etc.) of surfacesin higher dimensions.(2) Applications of these results to geometric optimization and range searching, to various visi-bility and intersection problems in computer graphics, to generalized Voronoi diagrams in higherdimensions, to motion planning in robotics, and to many other geometric problems at large.(3) Combinatorial, topological, and algorithmic problems involving planar arrangements of seg-ments or curves, including graph drawings.1
许多几何算法的算法复杂性(效率)主要取决于要计算的结构的大小(组合复杂性)。主要研究人员研究各种各样的问题,起源于机器人技术,计算机图形学,细胞网络,生物信息学等,都属于这一类。为了限制相应结构的复杂性,它们通常需要从数学和理论计算机科学的几个分支中提取的复杂技术。在大多数情况下,大部分的工作是专门研究的安排ofcurves和曲面在欧几里德空间,这是在心脏领域。在这个过程中,他们在几个经典数学学科中取得了重要的新成果,从Hellytheory到Tur 'an和Ramsey型极值图论。具体而言,PI正在研究:(1)与排列结构相关的组合,拓扑和算法问题(下包络和单元,水平,垂直分解,与点的关联等)。of surfaces表面in higher高dimensions尺寸. (2)这些结果的应用几何优化和范围搜索,在计算机图形学中的各种可扩展性和交叉问题,广义Voronoi图在higherdimensions,在机器人运动规划,以及许多其他几何问题的大。(3)涉及线段或曲线的平面排列的组合、拓扑和算法问题,包括图形学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Pollack其他文献
A theorem of ordered duality
- DOI:
10.1007/bf00147331 - 发表时间:
1982-01-01 - 期刊:
- 影响因子:0.500
- 作者:
Jacob E. Goodman;Richard Pollack - 通讯作者:
Richard Pollack
Convexity in Topological Affine Planes
- DOI:
10.1007/s00454-007-1336-5 - 发表时间:
2007-12-12 - 期刊:
- 影响因子:0.600
- 作者:
Raghavan Dhandapani;Jacob E. Goodman;Andreas Holmsen;Richard Pollack;Shakhar Smorodinsky - 通讯作者:
Shakhar Smorodinsky
An asymptotically tight bound on the number of semi-algebraically connected components of realizable sign conditions
- DOI:
10.1007/s00493-009-2357-x - 发表时间:
2009-09-01 - 期刊:
- 影响因子:1.000
- 作者:
Saugata Basu;Richard Pollack;Marie-Françoise Roy - 通讯作者:
Marie-Françoise Roy
Weaving patterns of lines and line segments in space
- DOI:
10.1007/bf01190155 - 发表时间:
1993-06-01 - 期刊:
- 影响因子:0.700
- 作者:
Jànos Pach;Richard Pollack;Emo Welzl - 通讯作者:
Emo Welzl
Richard Pollack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Pollack', 18)}}的其他基金
2007 Fall Workshop on Computational Geometry
2007 年秋季计算几何研讨会
- 批准号:
0735377 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Geometric Arrangements and their Algorithmic Applications
几何排列及其算法应用
- 批准号:
0514079 - 财政年份:2005
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Studies of Geometric Arrangements and their Algorithmic Applications
几何排列及其算法应用研究
- 批准号:
0098246 - 财政年份:2001
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Studies of Geometric Algorithms and Their Applications
几何算法及其应用研究
- 批准号:
9732101 - 财政年份:1998
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Combinatorial Algorithms in Real Algebraic Geometry
实代数几何中的组合算法
- 批准号:
9711240 - 财政年份:1997
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Studies of Geometric Algorithms and Their Applicatins
几何算法及其应用研究
- 批准号:
9424398 - 财政年份:1995
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Geometry of Configurations
数学科学:构型几何
- 批准号:
9400293 - 财政年份:1994
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Combinatorial Algorithms and Real Algebraic Geometry
组合算法和实代数几何
- 批准号:
9402640 - 财政年份:1994
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Mathematical Sciences: The Geometry of Configurations
数学科学:构型几何
- 批准号:
8501947 - 财政年份:1985
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
The Geometry of Configurations (Mathematics)
配置的几何(数学)
- 批准号:
8201342 - 财政年份:1982
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
Wonderful Varieties, Hyperplane Arrangements, and Poisson Representation Theory
奇妙的品种、超平面排列和泊松表示论
- 批准号:
2401514 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
R-Map - Mapping, understanding, assessing and predicting the effects of remote working arrangements in urban and rural areas
R-Map - 绘制、理解、评估和预测城乡地区远程工作安排的影响
- 批准号:
10106145 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
EU-Funded
Polymorphism in the symmetries of gastric pouch arrangements in the sea anemone Diadumene lineata
海葵胃袋排列对称性的多态性
- 批准号:
22KJ3132 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Experimental study of transverse physical responses induced by vortex-like arrangements of electric dipoles
电偶极子涡旋排列引起的横向物理响应的实验研究
- 批准号:
23K17663 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Discrete structures related to hyperplane arrangements, generalization, deepening, and applications
与超平面排列、泛化、深化和应用相关的离散结构
- 批准号:
23H00081 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Young people's experiences of wellbeing and belonging in the workplace, under hybrid working arrangements post-pandemic
大流行后混合工作安排下年轻人在工作场所的福祉和归属感体验
- 批准号:
2874033 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Studentship
Young people's experiences of wellbeing and belonging in the workplace, under hybrid working arrangements post-pandemic.
大流行后混合工作安排下年轻人在工作场所的福祉和归属感体验。
- 批准号:
2885807 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Studentship
Non-Standard Work Arrangements, Health and Wellbeing Among Hotel Housekeepers
酒店管家的非标准工作安排、健康与福祉
- 批准号:
10592525 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Improving support for LGBTQ+ young people in foster care, informal fostering arrangements and supported lodgings in England
改善英格兰寄养、非正式寄养安排和住宿方面对 LGBTQ 年轻人的支持
- 批准号:
2886429 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Studentship