Duality between Complexity and Algorithms
复杂性和算法之间的二元性
基本信息
- 批准号:0515332
- 负责人:
- 金额:$ 20.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-15 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Intellectual Merit: Algorithm design investigates the most efficient ways to solve specific computational problems, whereas complexity theory investigates relationships between general classes of computational problems. This proposal will investigate situations in which answering questions in complexity require us to understand specific algorithmic problems, and designing efficient algorithms require us to answer questions in complexity. Recently, there have been several results that expose the connection between complexity and algorithms. Examples include the connections between algebraic circuit lower bounds and polynomial-identity testing, better exponential algorithms for _ -SAT and circuit lower bounds, limitations of widely used backtracking algorithms and proof complexity, and constructions of error-correcting codes and constructions of pseudorandom generators. The proposed work will elaborate on these connections between combinatorial constructions, efficient algorithms, and complexity. It will use these connections to further our understanding of both algorithms and complexity. It will also seek new connections in the study of randomness in computing, proof complexity, the exact complexity of N P-complete problems, and formal models of algorithm paradigms.This proposal will investigate issues where algorithm design is key to new results in complexity. Such issues include:_Which instances of optimization problems are the most intractable ones? Exactly how difficult are these problems?What are good heuristic methods for solving optimization problems? When and how well do they work?Can we distinguish between the powers of various general algorithmic methods (e.g., dynamic programming, greedy algorithms, back-tracking, local search, linear-programming relaxation) for solving these problems?How much does randomness help in solving problems?What is the relationship between the theory of sub exponential time algorithms and fixed parameter tractability? What other consequences would the existence of sub exponential algorithms have for complexity and cryptography?While complete answers to most of these questions will probably not be possible in the foreseeable future, researchers in complexity, including the PIs, have made substantial progress on all of them. In particular, it is becoming apparent that these questions are so interrelated that it is impossible to address any one issue in isolation. Instead, success will require a multi-pronged effort that reveals the interconnections, and uses progress in one direction to obtain similar progress on others.Broader Impact: Search and optimization are central to any computational issue in science and engineering. For example, finding the most probable folding of a protein, finding the smallest area of a VLSI chip, and finding the optimal way to classify data are all combinatorial optimization problems. The same algorithmic techniques are used to solve such problems in a wide variety of application domains. However, many of these techniques are heuristic in that factors that determine the performance are not well understood. This is more than academic issue since the lack of understanding prevents users from matching application areas to the most suitable algorithmic techniques. The work in this proposal is intended to further this understanding and hence may indirectly lead to improvements in many diverse application domains.This proposal will also train graduate students to be top researchers and educators like many of our alumni.1
智力优势:算法设计研究解决特定计算问题的最有效方法,而复杂性理论研究一般计算问题之间的关系。本提案将研究回答复杂问题需要我们理解特定算法问题的情况,以及设计高效算法需要我们回答复杂问题的情况。最近,有几个结果揭示了复杂性和算法之间的联系。例子包括代数电路下界与多项式恒等检验之间的联系,_ -SAT和电路下界的更好的指数算法,广泛使用的回溯算法的局限性和证明复杂性,以及纠错码的构造和伪随机生成器的构造。建议的工作将详细说明组合结构,高效算法和复杂性之间的这些联系。它将利用这些联系进一步加深我们对算法和复杂性的理解。它还将在计算中的随机性、证明复杂性、N - p完全问题的精确复杂性和算法范例的正式模型的研究中寻求新的联系。本提案将探讨算法设计是复杂性新结果的关键问题。这些问题包括:哪些优化问题的实例是最棘手的?这些问题到底有多难?什么是解决优化问题的好的启发式方法?它们何时起作用,效果如何?我们能否区分解决这些问题的各种通用算法方法(例如,动态规划、贪婪算法、回溯、局部搜索、线性规划松弛)的能力?随机性对解决问题有多大帮助?次指数时间算法理论与固定参数可跟踪性之间的关系是什么?亚指数算法的存在会对复杂性和密码学产生什么其他影响?虽然在可预见的未来,这些问题的完整答案可能是不可能的,但包括pi在内的复杂性研究人员已经在所有这些问题上取得了实质性进展。特别是,越来越明显的是,这些问题是如此相互关联,以致不可能孤立地处理任何一个问题。相反,成功将需要多管齐下的努力,揭示相互联系,并利用一个方向的进展在其他方面取得类似的进展。更广泛的影响:搜索和优化是科学和工程中任何计算问题的核心。例如,寻找蛋白质的最可能折叠,寻找VLSI芯片的最小面积,以及寻找数据分类的最佳方法都是组合优化问题。在各种各样的应用领域中,使用相同的算法技术来解决此类问题。然而,这些技术中的许多都是启发式的,因为决定性能的因素没有得到很好的理解。这不仅仅是一个学术问题,因为缺乏理解阻碍了用户将应用领域与最合适的算法技术相匹配。本提案中的工作旨在进一步理解这一点,因此可能间接导致许多不同应用领域的改进。这项计划还将把研究生培养成顶尖的研究人员和教育工作者,就像我们的许多校友一样
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Russell Impagliazzo其他文献
Toward a Model for Backtracking and Dynamic Programming
- DOI:
10.1007/s00037-011-0028-y - 发表时间:
2011-11-22 - 期刊:
- 影响因子:1.000
- 作者:
Michael Alekhnovich;Allan Borodin;Joshua Buresh-Oppenheim;Russell Impagliazzo;Avner Magen;Toniann Pitassi - 通讯作者:
Toniann Pitassi
Russell Impagliazzo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Russell Impagliazzo', 18)}}的其他基金
Collaborative Research: AF:Medium: Advancing the Lower Bound Frontier
合作研究:AF:中:推进下界前沿
- 批准号:
2212135 - 财政年份:2022
- 资助金额:
$ 20.16万 - 项目类别:
Continuing Grant
AF: SMALL: Finding Models of Data and Mathematical Objects
AF:小:寻找数据和数学对象的模型
- 批准号:
1909634 - 财政年份:2019
- 资助金额:
$ 20.16万 - 项目类别:
Standard Grant
AF: Large: Collaborative Research: Exploiting Duality between Meta-Algorithms and Complexity
AF:大:协作研究:利用元算法和复杂性之间的二元性
- 批准号:
1213151 - 财政年份:2012
- 资助金额:
$ 20.16万 - 项目类别:
Continuing Grant
CT-ISG: Amplifying both security and reliability
CT-ISG:增强安全性和可靠性
- 批准号:
0716790 - 财政年份:2007
- 资助金额:
$ 20.16万 - 项目类别:
Continuing Grant
Quantifying Intractability and the Complexity of Heuristics
量化启发法的难处理性和复杂性
- 批准号:
0098197 - 财政年份:2001
- 资助金额:
$ 20.16万 - 项目类别:
Standard Grant
Empirical Analysis of Search Spaces Using Population-Based Sampling
使用基于群体的采样对搜索空间进行实证分析
- 批准号:
9734880 - 财政年份:1998
- 资助金额:
$ 20.16万 - 项目类别:
Continuing Grant
NSF Young Investigator: Small Depth Boolean Circuits and Complexity - Theoretic Cryptography
NSF 青年研究员:小深度布尔电路和复杂性 - 理论密码学
- 批准号:
9257979 - 财政年份:1992
- 资助金额:
$ 20.16万 - 项目类别:
Continuing Grant
相似海外基金
Long Term Analysis of Relationships between Social Complexity, Labor and Monumentality
社会复杂性、劳动与纪念性之间关系的长期分析
- 批准号:
2335047 - 财政年份:2024
- 资助金额:
$ 20.16万 - 项目类别:
Standard Grant
Synergies Between Complexity and Learning (SYCLE)
复杂性与学习之间的协同作用 (SYCLE)
- 批准号:
EP/Y007999/1 - 财政年份:2023
- 资助金额:
$ 20.16万 - 项目类别:
Research Grant
Does the relationship between rhythmic complexity, pleasure, and movement change over development or with specialized training?
节奏复杂性、愉悦感和运动之间的关系是否会随着发展或专门训练而改变?
- 批准号:
557732-2021 - 财政年份:2022
- 资助金额:
$ 20.16万 - 项目类别:
Postdoctoral Fellowships
Towards an immuno-epidemiological framework: The trade-off between biological detail and mathematical complexity
迈向免疫流行病学框架:生物学细节和数学复杂性之间的权衡
- 批准号:
RGPIN-2018-05862 - 财政年份:2022
- 资助金额:
$ 20.16万 - 项目类别:
Discovery Grants Program - Individual
Towards an immuno-epidemiological framework: The trade-off between biological detail and mathematical complexity
迈向免疫流行病学框架:生物学细节和数学复杂性之间的权衡
- 批准号:
RGPIN-2018-05862 - 财政年份:2021
- 资助金额:
$ 20.16万 - 项目类别:
Discovery Grants Program - Individual
Resources and co-resources: a junction between semantics and descriptive complexity
资源和共同资源:语义和描述复杂性之间的结合点
- 批准号:
EP/T00696X/2 - 财政年份:2021
- 资助金额:
$ 20.16万 - 项目类别:
Research Grant
Does the relationship between rhythmic complexity, pleasure, and movement change over development or with specialized training?
节奏复杂性、愉悦感和运动之间的关系是否会随着发展或专门训练而改变?
- 批准号:
557732-2021 - 财政年份:2021
- 资助金额:
$ 20.16万 - 项目类别:
Postdoctoral Fellowships
Towards an immuno-epidemiological framework: The trade-off between biological detail and mathematical complexity
迈向免疫流行病学框架:生物学细节和数学复杂性之间的权衡
- 批准号:
RGPIN-2018-05862 - 财政年份:2020
- 资助金额:
$ 20.16万 - 项目类别:
Discovery Grants Program - Individual
AF: Small: Intermediate models between communication complexity and query complexity
AF:小:通信复杂度和查询复杂度之间的中间模型
- 批准号:
2006443 - 财政年份:2020
- 资助金额:
$ 20.16万 - 项目类别:
Standard Grant
From Structure to Complexity: Exploring the Relationship Between History and International Relations Theory through the Falklands & Iraq Conflicts
从结构到复杂性:通过马岛探索历史与国际关系理论的关系
- 批准号:
2386749 - 财政年份:2020
- 资助金额:
$ 20.16万 - 项目类别:
Studentship