Quantifying Intractability and the Complexity of Heuristics

量化启发法的难处理性和复杂性

基本信息

  • 批准号:
    0098197
  • 负责人:
  • 金额:
    $ 35.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-01 至 2004-09-30
  • 项目状态:
    已结题

项目摘要

Search and optimization problems are central to all areas of computer scienceand engineering. Finding the optimal layout for a VLSI circuit or the lowest energy configuration of a crystal are both examples of optimization problems.While such problems are believed to be intractable, requiring exponential time to solve the worst-case instances, many heuristic methods have been observed to be relatively successful on instances that arise in different applications.This project addresses questions concerning the quantitative measures of the intractability of search and optimization problems, as opposed to qualitative notionssuch as NP-completeness. The following are some of the questions addressed in this project:1. Which instances of optimization problems are the most intractable ones?2. Exactly how difficult are these problems? 3. What are good heuristic methods for solving optimization problems ? When and how well do they work? 4. Are specific non-complete problems such as factoring also intractable? 5. How much does randomness help in solving problems? 6. Are hard problems suitable for cryptographic applications?If so, what levels of security do they provide these applications? Unconditional answers to these questions first require solving the P=NP problem. However, this project will use two approaches to find the most likely answers to these questions. The first approach is to provide proofs resolving these issues underplausible complexity assumptions. The second approach is to examine restricted but powerful classes of algorithms that include the most successful heuristics for the problemsunder study. This approach will include attempts to both explain the success of such heuristics and to show limitations that can be used as a guide for the likely inherentcomplexity of the problems.
搜索和优化问题是计算机科学和工程所有领域的核心。寻找超大规模集成电路的最佳布局或晶体的最低能量配置都是优化问题的例子。虽然这些问题被认为是棘手的,需要指数时间来解决最坏情况,许多启发式方法已被观察到是相对成功的情况下,出现在不同的应用。本项目解决的问题,定量措施的棘手性,搜索和优化问题,而不是定性的概念,如NP完全性。 以下是本项目中解决的一些问题:1。哪些优化问题是最难处理的?2.这些问题到底有多难? 3.解决最优化问题的好的启发式方法有哪些? 它们何时以及如何发挥作用? 4.像保理这样的特定非完全问题也是棘手的吗? 5.随机性对解决问题有多大帮助?6.困难问题适合密码学应用吗?如果是,他们为这些应用程序提供了什么级别的安全性?这些问题的无条件答案首先需要解决P=NP问题。然而,本项目将使用两种方法来找到这些问题最可能的答案。 第一种方法是在合理的复杂性假设下提供解决这些问题的证据。 第二种方法是检查受限但功能强大的算法类别,其中包括研究中最成功的算法。这种方法将包括试图解释这种方法的成功,并显示可以作为问题可能的内在复杂性的指导的局限性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Russell Impagliazzo其他文献

Toward a Model for Backtracking and Dynamic Programming
  • DOI:
    10.1007/s00037-011-0028-y
  • 发表时间:
    2011-11-22
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Michael Alekhnovich;Allan Borodin;Joshua Buresh-Oppenheim;Russell Impagliazzo;Avner Magen;Toniann Pitassi
  • 通讯作者:
    Toniann Pitassi

Russell Impagliazzo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Russell Impagliazzo', 18)}}的其他基金

Collaborative Research: AF:Medium: Advancing the Lower Bound Frontier
合作研究:AF:中:推进下界前沿
  • 批准号:
    2212135
  • 财政年份:
    2022
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Continuing Grant
AF: SMALL: Finding Models of Data and Mathematical Objects
AF:小:寻找数据和数学对象的模型
  • 批准号:
    1909634
  • 财政年份:
    2019
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Standard Grant
AF: Large: Collaborative Research: Exploiting Duality between Meta-Algorithms and Complexity
AF:大:协作研究:利用元算法和复杂性之间的二元性
  • 批准号:
    1213151
  • 财政年份:
    2012
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Continuing Grant
CT-ISG: Amplifying both security and reliability
CT-ISG:增强安全性和可靠性
  • 批准号:
    0716790
  • 财政年份:
    2007
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Continuing Grant
Duality between Complexity and Algorithms
复杂性和算法之间的二元性
  • 批准号:
    0515332
  • 财政年份:
    2005
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Continuing Grant
Developing a Theory of Heuristics
发展启发式理论
  • 批准号:
    9734911
  • 财政年份:
    1998
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Standard Grant
Empirical Analysis of Search Spaces Using Population-Based Sampling
使用基于群体的采样对搜索空间进行实证分析
  • 批准号:
    9734880
  • 财政年份:
    1998
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Continuing Grant
NSF Young Investigator: Small Depth Boolean Circuits and Complexity - Theoretic Cryptography
NSF 青年研究员:小深度布尔电路和复杂性 - 理论密码学
  • 批准号:
    9257979
  • 财政年份:
    1992
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Continuing Grant

相似海外基金

Elucidation of the mechanism of intractability of pancreatobiliary cancers using patients-derived organoids
使用患者来源的类器官阐明胰胆癌的难治性机制
  • 批准号:
    22H02839
  • 财政年份:
    2022
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Contentious and controversial policy issues: Using frame analysis to expose and resolve the intractability of the GRA debate
有争议和有争议的政策问题:利用框架分析来揭露和解决 GRA 辩论的棘手问题
  • 批准号:
    2561008
  • 财政年份:
    2021
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Studentship
Intractability of Rank-Distance Median of Permutations.
排列的等级距离中值的棘手性。
  • 批准号:
    526515-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 35.17万
  • 项目类别:
    University Undergraduate Student Research Awards
An analysis of policy intractability in the climate change mitigation challenge
缓解气候变化挑战中的政策棘手问题分析
  • 批准号:
    1939628
  • 财政年份:
    2017
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Studentship
Is the iPS marker "TRA-1-60" an indicator of cancer intractability against therapeutics?
iPS 标记物“TRA-1-60”是癌症治疗难治性的指标吗?
  • 批准号:
    16K15245
  • 财政年份:
    2016
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Investigation of intractability of pancreatic cancer by using 3D culture of pancreatic stellate cells
利用胰腺星状细胞 3D 培养研究胰腺癌的难治性
  • 批准号:
    26293119
  • 财政年份:
    2014
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Developing computer-assisted methods for proving computational intractability
开发计算机辅助方法来证明计算的难处理性
  • 批准号:
    24500006
  • 财政年份:
    2012
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genetic factors to Graves 'ophthalmopathy, other complications and the intractability to anti-thyroid drugs in patients with Graves' disease
格雷夫斯眼病的遗传因素、其他并发症以及格雷夫斯病患者抗甲状腺药物的难治性
  • 批准号:
    21591185
  • 财政年份:
    2009
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Establishing Computer Assisted Proof Methods for Computational Intractability
建立计算难解性的计算机辅助证明方法
  • 批准号:
    21500005
  • 财政年份:
    2009
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genetic analysis of cancer stems cells in the carcinogenesis and the intractability of treatment of cancer.
癌症干细胞在癌变过程中的遗传分析以及癌症治疗的难点。
  • 批准号:
    20390360
  • 财政年份:
    2008
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了