Recent Developments in Higher Dimensional Algebraic Geometry Conference
高维代数几何会议的最新进展
基本信息
- 批准号:0515842
- 负责人:
- 金额:$ 1.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-01-01 至 2006-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Johns Hopkins University Department of Mathematics, together with theJapan-U.S. Mathematics Institute (JAMI), will hold a conference andworkshop in March 2006 under the title "Recent developments in higherdimensional algebraic geometry". The main focus of the proposed activitywill be birational geometry. Finding good birational models of algebraicvarieties and understanding the way these appear is the main achievementof the minimal model program. The activity will cover related topics ofinterest: derived categories, Fano varieties, Mori-Fano fiber spaces,explicit 3-fold geometry, minimal log discrepancies, singularities,rational curves and connectivity. Geometry is one of the oldest mathematical subjects. The Greeks weredescribing geometrical objects using congruence (of segments, angles,...) and incidences (collinearity, tangency, ...). Congruence evolvedinto the modern-day differential geometry. Incidences evolved intoalgebraic geometry simply by replacing geometrical shapes by theequations defining them. The objects of study of algebraic geometry arecalled algebraic varieties. Understanding the structure of algebraicvarieties is of fundamental importance from both the standpoint ofalgebraic geometry alone, and from that of the related disciplines andareas of application - mathematical physics, computational geometry,number theory, and others. Knowledge of algebraic varieties is alsoimportant in applied fields, such as optimization, control, statistics,economics and bioinformatics, coding, complexity and communications.
约翰霍普金斯大学数学系与日美数学研究所将于2006年3月举行一次题为“高维代数几何的最新发展”的会议和讲习班。本次活动的重点是双有理几何。找到代数簇的好的双有理模型并理解它们出现的方式是最小模型程序的主要任务。活动将涵盖相关的主题ofinterest:派生类别,法诺品种,Mori-Fano纤维空间,明确的3倍几何,最小的日志差异,奇点,合理的曲线和连通性。几何学是最古老的数学学科之一。希腊人用(线段、角等)的全等来描述几何物体。和发生率(共线性、相切等)。同余演化成了现代的微分几何。事件演变成代数几何简单地取代几何形状的方程定义他们。代数几何的研究对象是代数簇.理解代数簇的结构,无论从代数几何本身的观点来看,还是从相关学科和应用领域(数学物理、计算几何、数论等)的观点来看,都具有根本的重要性。代数簇的知识在应用领域也很重要,如优化、控制、统计、经济和生物信息学、编码、复杂性和通信。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vyacheslav Shokurov其他文献
Vyacheslav Shokurov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vyacheslav Shokurov', 18)}}的其他基金
Log singularities, discrepancies, and thresholds with applications
记录应用程序的奇点、差异和阈值
- 批准号:
0400832 - 财政年份:2004
- 资助金额:
$ 1.7万 - 项目类别:
Continuing Grant
Finite Generatedness of Algebras and Flips
代数和翻转的有限生成性
- 批准号:
0100991 - 财政年份:2001
- 资助金额:
$ 1.7万 - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Singularities and Minimal Models in Dimension >3
美法合作研究:维度中的奇点和最小模型
- 批准号:
9603180 - 财政年份:1997
- 资助金额:
$ 1.7万 - 项目类别:
Standard Grant
U.S.-Japan Seminar: Classification of Algebraic Varieties/ March 1996/Baltimore, Maryland
美日研讨会:代数簇分类/1996 年 3 月/马里兰州巴尔的摩
- 批准号:
9416927 - 财政年份:1995
- 资助金额:
$ 1.7万 - 项目类别:
Standard Grant
Mathematical Sciences: The Log Model Theory
数学科学:对数模型理论
- 批准号:
9500971 - 财政年份:1995
- 资助金额:
$ 1.7万 - 项目类别:
Continuing Grant
Mathematical Sciences: Log Models for 3-Folds
数学科学:三重对数模型
- 批准号:
9200933 - 财政年份:1992
- 资助金额:
$ 1.7万 - 项目类别:
Continuing Grant
相似海外基金
Brunel University London and PB Design and Developments Limited KTP 22_23 R5
伦敦布鲁内尔大学和 PB Design and Developments Limited KTP 22_23 R5
- 批准号:
10064693 - 财政年份:2024
- 资助金额:
$ 1.7万 - 项目类别:
Knowledge Transfer Partnership
Developments of cosmic muometric buoy
宇宙测微浮标的进展
- 批准号:
23H01264 - 财政年份:2023
- 资助金额:
$ 1.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New developments in aromatic architect: optimization of structures and spaces and created by pi-conjugated systems and functionalization
芳香建筑师的新发展:结构和空间的优化以及π共轭系统和功能化的创造
- 批准号:
23H01944 - 财政年份:2023
- 资助金额:
$ 1.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 1.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments of research on graphs by representations of noncommutative algebras
非交换代数表示图的研究进展
- 批准号:
23K03064 - 财政年份:2023
- 资助金额:
$ 1.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
- 批准号:
23K03139 - 财政年份:2023
- 资助金额:
$ 1.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Similarities in representation theory of quantum loop algebras of several types and their developments
几种量子环代数表示论的相似性及其发展
- 批准号:
23K12950 - 财政年份:2023
- 资助金额:
$ 1.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
New developments in Javanese Homo erectus research using synchrotron, proteomics and high precision dating
利用同步加速器、蛋白质组学和高精度测年技术进行爪哇直立人研究的新进展
- 批准号:
23K17404 - 财政年份:2023
- 资助金额:
$ 1.7万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Developments of game theory played on networks with incomplete information and their applications to public policies
不完全信息网络博弈论的发展及其在公共政策中的应用
- 批准号:
23K01343 - 财政年份:2023
- 资助金额:
$ 1.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments of variational quantum algorithms based on circuit structure optimization
基于电路结构优化的变分量子算法研究进展
- 批准号:
23K03266 - 财政年份:2023
- 资助金额:
$ 1.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)