Linear systems on fibrations
纤维线性系统
基本信息
- 批准号:1400943
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-15 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports a research project in the field of algebra and geometry, old and traditional areas of mathematics, with methods and applications in modern birational geometry. These methods and applications interact with most of branches of mathematics, including differential geometry, topology, number theory, and algebra, and can be useful in mathematical physics, cosmology, cryptography, and robotics. From its origin geometry is closely related to volume. The main objects under investigation are differential forms of volume type on families and their products. The project addresses problems on polynomial finite generatedness of those forms and on estimation of degrees of generators with respect to the dimension and possibly to some other discrete invariants of members of families. New techniques are needed in dealing with differential forms on families or relative differential forms. Another novelty of the project is to develop theory of the finite generatedness based on universal mappings from moduli theory instead of traditionally used vanishing of cohomologies.The project deals with fundamental problems on linear systems of divisors associated to twisted differential forms on fibered spaces. Standard problems about linear systems are problems about their base points, about singularities of their general or special members, and about correspondences with or isomorphisms to other systems. Respectively, the PI considers the semiampleness problem for moduli part of weakly log canonical families, the construction of log canonical complements for fibered varieties with applications to log canonical local and global thresholds, to a new beta invariant and to Tian's alpha invariant, and explores possibility of an isomorphism between log canonical linear systems adjoint to the discriminant curve for different conic bundles structures of a threefold with applications to birational classification of those conic bundles. Strictly fibered cases for log canonical complements and for Sarkisov's links do not cover all possible cases, they cover main cases and remaining ones are exceptional. The latter form usually bounded families up to birational isomorphisms. A new technique relevant to these problems will be developed under the project. This makes use of relative toroidal log singularities, theory of b-polarizations, theory of moduli of triples, interlaced by flops, and correspondences of those moduli. Investigation of moduli of varieties defined up to flops is natural and agrees with the spirit of current birational geometry where the minimal models are defined up to flops.
该奖项支持代数和几何领域的研究项目,数学的古老和传统领域,以及现代双有理几何的方法和应用。这些方法和应用与大多数数学分支相互作用,包括微分几何,拓扑学,数论和代数,并且可以在数学物理,宇宙学,密码学和机器人学中有用。从它的起源几何是密切相关的体积。研究的主要对象是族及其乘积的体积类型的微分形式。该项目解决的问题多项式有限generatedness的这些形式和估计度的发电机方面的尺寸和可能的一些其他离散不变量的家庭成员。在处理族上的微分形式或相对微分形式时,需要新的技巧。该项目的另一个新奇是发展理论的有限generatedness的基础上普遍映射的模理论,而不是传统上使用消失的cohomologies.The项目涉及的基本问题,线性系统的因子相关的扭曲微分形式的纤维空间。关于线性系统的标准问题是关于它们的基点、关于它们的一般或特殊成员的奇异性、关于与其他系统的对应或同构的问题。分别地,PI考虑了弱对数典型族的模部分的半满问题,纤维簇的对数典型补的构造及其对对数典型局部和全局阈值的应用,对新的beta不变量和Tian的alpha不变量,并探讨了三重锥束不同结构的判别曲线的对数正则线性系统之间同构的可能性。并应用于锥丛的双有理分类。严格纤维的情况下,日志典型的补充和Sarkisov的链接不包括所有可能的情况下,他们涵盖了主要的情况下,其余的是例外。后者的形式通常有界的家庭双理性同构。将在该项目下开发与这些问题有关的新技术。这使得使用相对环形日志奇异性,理论的b-极化,理论的三重模,交错的触发器,和对应的这些模量。调查的模量定义的品种,以触发器是自然的,并同意目前的双有理几何的精神,其中最小的模型被定义为触发器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vyacheslav Shokurov其他文献
Vyacheslav Shokurov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vyacheslav Shokurov', 18)}}的其他基金
Recent Developments in Higher Dimensional Algebraic Geometry Conference
高维代数几何会议的最新进展
- 批准号:
0515842 - 财政年份:2006
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Log singularities, discrepancies, and thresholds with applications
记录应用程序的奇点、差异和阈值
- 批准号:
0400832 - 财政年份:2004
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Finite Generatedness of Algebras and Flips
代数和翻转的有限生成性
- 批准号:
0100991 - 财政年份:2001
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Singularities and Minimal Models in Dimension >3
美法合作研究:维度中的奇点和最小模型
- 批准号:
9603180 - 财政年份:1997
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Mathematical Sciences: The Log Model Theory
数学科学:对数模型理论
- 批准号:
9500971 - 财政年份:1995
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
U.S.-Japan Seminar: Classification of Algebraic Varieties/ March 1996/Baltimore, Maryland
美日研讨会:代数簇分类/1996 年 3 月/马里兰州巴尔的摩
- 批准号:
9416927 - 财政年份:1995
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Mathematical Sciences: Log Models for 3-Folds
数学科学:三重对数模型
- 批准号:
9200933 - 财政年份:1992
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“阳化气、阴成形”理论探讨龟鹿二仙胶调控 HIF-1α/Systems Xc-通路抑制铁死亡治疗少弱精子症的作用机理
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
- 批准号:31971398
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
新型非对称频分双工系统及其射频关键技术研究
- 批准号:61102055
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
超高频超宽带系统射频基带补偿理论与技术的研究
- 批准号:61001097
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相关信道环境下MIMO-OFDM系统的空时码设计问题研究
- 批准号:60572117
- 批准年份:2005
- 资助金额:6.0 万元
- 项目类别:面上项目
相似海外基金
BAMBOO - Build scAled Modular Bamboo-inspired Offshore sOlar systems
BAMBOO - 构建规模化模块化竹子式海上太阳能系统
- 批准号:
10109981 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
EU-Funded
FABB-HVDC (Future Aerospace power conversion Building Blocks for High Voltage DC electrical power systems)
FABB-HVDC(高压直流电力系统的未来航空航天电力转换构建模块)
- 批准号:
10079892 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Legacy Department of Trade & Industry
Digital chemistry and catalysis: redefining reactions in confined systems
数字化学和催化:重新定义受限系统中的反应
- 批准号:
FL220100059 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Australian Laureate Fellowships
Interactions of Human and Machine Intelligence in Modern Economic Systems
现代经济系统中人与机器智能的相互作用
- 批准号:
DP240100506 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Discovery Projects
Linking Australia’s basement and cover mineral systems
连接澳大利亚的地下室和覆盖矿物系统
- 批准号:
DE240101283 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Discovery Early Career Researcher Award
Phase Averaged Deferred Correction for Multi-Timescale Systems
多时间尺度系统的相位平均延迟校正
- 批准号:
EP/Y032624/1 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Research Grant
SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
- 批准号:
EP/Y035976/1 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Research Grant
Directed and adaptive evolution of photosynthetic systems
光合系统的定向和适应性进化
- 批准号:
MR/Y011635/1 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Fellowship
Managing the Activity of Pollinators in Protected Cropping Systems (MAPP-CS)
管理保护性耕作系统中授粉媒介的活动 (MAPP-CS)
- 批准号:
BB/Z514366/1 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Research Grant
SONNETS: Scalability Oriented Novel Network of Event Triggered Systems
SONNETS:面向可扩展性的事件触发系统新型网络
- 批准号:
EP/X036006/1 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Research Grant