Mathematical Sciences: Log Models for 3-Folds
数学科学:三重对数模型
基本信息
- 批准号:9200933
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1992
- 资助国家:美国
- 起止时间:1992-06-01 至 1995-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This awards supports the research of Professor V. Shokurov to work in algebraic geometry. He will work on problems involved in minimal model theory in dimension 3. He hopes to show that relative log models for 3-folds exists and investigate their properties under boundary changes. The research is in the field of algebraic geometry, one of the oldest parts of modern mathematics, but one which blossomed to the point where it has, in the past 10 years, solved problems that have stood for centuries. Originally, it treated figures defined in the plane by the simplest of equations, namely polynomials. Today, the field uses methods not only from algebra, but also from analysis and topology, and conversely it is extensively used in those fields. Moreover, it has proved itself useful in fields as diverse as physics, theoretical computer science, cryptography, coding theory and robotics.
该奖项支持教授V. Shokurov 来研究代数几何。 他将致力于解决 最小模型理论中的第三维度。 他希望以此表明, 存在3倍的相对对数模型,并研究其 边界变化下的性质。 这项研究是在代数几何领域,其中一个 现代数学中最古老的部分,但其中一个 在过去的10年里, 已经屹立了几个世纪 最初,它把数字 在平面上由最简单的方程定义,即 多项式 今天,该领域使用的方法不仅来自 代数,但也从分析和拓扑学,反过来说,它 广泛应用于这些领域。 此外,它还证明, 它本身在物理学、理论、 计算机科学、密码学、编码理论和机器人技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vyacheslav Shokurov其他文献
Vyacheslav Shokurov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vyacheslav Shokurov', 18)}}的其他基金
Recent Developments in Higher Dimensional Algebraic Geometry Conference
高维代数几何会议的最新进展
- 批准号:
0515842 - 财政年份:2006
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Log singularities, discrepancies, and thresholds with applications
记录应用程序的奇点、差异和阈值
- 批准号:
0400832 - 财政年份:2004
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Finite Generatedness of Algebras and Flips
代数和翻转的有限生成性
- 批准号:
0100991 - 财政年份:2001
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Singularities and Minimal Models in Dimension >3
美法合作研究:维度中的奇点和最小模型
- 批准号:
9603180 - 财政年份:1997
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Mathematical Sciences: The Log Model Theory
数学科学:对数模型理论
- 批准号:
9500971 - 财政年份:1995
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
U.S.-Japan Seminar: Classification of Algebraic Varieties/ March 1996/Baltimore, Maryland
美日研讨会:代数簇分类/1996 年 3 月/马里兰州巴尔的摩
- 批准号:
9416927 - 财政年份:1995
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
- 批准号:
AH/Y007654/1 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Research Grant
International Centre for Mathematical Sciences 2024
国际数学科学中心 2024
- 批准号:
EP/Z000467/1 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Research Grant
Isaac Newton Institute for Mathematical Sciences (INI)
艾萨克·牛顿数学科学研究所 (INI)
- 批准号:
EP/Z000580/1 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Research Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
- 批准号:
2330043 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Cooperative Agreement
REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
- 批准号:
2349230 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: A Syndrome of Care: The New Sciences of Survivorship at the Frontier of Medical Rescue
博士论文研究:护理综合症:医疗救援前沿的生存新科学
- 批准号:
2341900 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Conference: Emerging Statistical and Quantitative Issues in Genomic Research in Health Sciences
会议:健康科学基因组研究中新出现的统计和定量问题
- 批准号:
2342821 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
ICE-TI: A Decolonized Approach to an AAS in Social and Behavioral Sciences
ICE-TI:社会和行为科学中 AAS 的非殖民化方法
- 批准号:
2326751 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317573 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317570 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant














{{item.name}}会员




