Workshop on Applications of Methods of Stochastic Systems and Statistical Physics in Biology

随机系统和统计物理方法在生物学中的应用研讨会

基本信息

  • 批准号:
    0517864
  • 负责人:
  • 金额:
    $ 2.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-01 至 2006-08-31
  • 项目状态:
    已结题

项目摘要

The objectives of the interdisciplinary workshop "Applications of Methods of Stochastic Systems and Statistical Physics in Biology", jointly organized by the Interdisciplinary Center for the Study of Biocomplexity at the University of Notre Dame, Biocomplexity Institute at Indiana University, Los Alamos National Laboratory, and in cooperation with the Society of Industrial and Applied Mathematics (SIAM), are to: 1) Discuss new methods of stochastic analysis and statistical physics of importance in biological modeling and suggest new problems for modeling and experiment; 2) Explore similarities and differences between complex biological phenomena due to noise; 3) Promote interactions between mathematicians, biologists, chemists, physicists and engineers with interests in modeling stochastic behavior in biology and 4) Provide a forum for junior faculty and graduate students to interact with a wide range of experts and attract new researchers to the field of biological modeling. The topics will cover length scales from single molecule interactions and genetics to systems biology and ecology. The meeting will consist of a public lecture, a keynote address, four oral sessions, a poster session and a panel discussion on future directions. The scientific focus of the workshop will be on 1) the outstanding problems in biological and medical research which require stochastic and statistical approaches, 2) the main mathematical issues which complicate applications of such methods and 3) the best current solutions and existing solutions from non-biological stochastic and statistical modeling which can be applied to solve the problems in 2). The Workshop will bring together researchers in many disciplines (including mathematics, experimental and theoretical biology, medical research, biophysics, engineering, and computer science) to discuss current and future applications of methods of stochastic systems and statistical physics to problems ranging from single molecular biophysics to HIV immunology and cardiac electrophysiology. This Workshop will promote collaboration and development of both experimental and theoretical studies of biology and expose a broad range of outside researchers to problems in mathematical and computational modeling of complex biological systems. This cross fertilization should help mathematical, physical and engineering communities in reaching out to biologists, resulting in new mathematical and computational approaches which will improve our understanding of the fundamental problems in biology.
由圣母大学生物复杂性研究跨学科中心、印第安纳州大学生物复杂性研究所、洛斯阿拉莫斯国家实验室联合举办的“随机系统和统计物理学方法在生物学中的应用”跨学科讲习班的目标是:1)讨论随机分析和统计物理学在生物建模中的重要性,并提出建模和实验中的新问题; 2)探索噪声引起的复杂生物现象之间的相似性和差异; 3)促进数学家、生物学家、化学家之间的互动,物理学家和工程师,对生物学中的随机行为建模感兴趣;为初级教师和研究生提供一个论坛,与广泛的专家互动,并吸引新的研究人员到生物学领域建模 主题将涵盖从单分子相互作用和遗传学到系统生物学和生态学的长度尺度。 会议将包括一次公开演讲、一次主旨发言、四次口头会议、一次海报会议和一次关于未来方向的小组讨论。研讨会的科学重点将是1)生物和医学研究中需要随机和统计方法的突出问题,2)使这些方法的应用复杂化的主要数学问题,3)非生物随机和统计建模的最佳当前解决方案和现有解决方案,可用于解决2)中的问题。研讨会将汇集许多学科的研究人员(包括数学,实验和理论生物学,医学研究,生物物理学,工程学和计算机科学),讨论随机系统和统计物理学方法的当前和未来应用,从单分子生物物理学到艾滋病毒免疫学和心脏电生理学。该研讨会将促进生物学实验和理论研究的合作和发展,并使广泛的外部研究人员接触复杂生物系统的数学和计算建模问题。这种交叉施肥应该有助于数学,物理和工程界接触生物学家,从而产生新的数学和计算方法,这将提高我们对生物学基本问题的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Alber其他文献

Linking chemical signaling to mechanical components to determine tissue shape in the <em>Drosophila</em> wing imaginal disc
  • DOI:
    10.1016/j.bpj.2022.11.2854
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Alysha Toomey;Nilay Kumar;Mayesha S. Mim;Mark Alber;Weitao Chen;Jeremiah J. Zartman
  • 通讯作者:
    Jeremiah J. Zartman
Study of the Role of Factor VII in Venous Thrombus Formation Using Combination of a Multiscale Model and Experiment
  • DOI:
    10.1016/j.bpj.2009.12.2097
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mark Alber;Zhiliang Xu;Joshua Lioi;Malgorzata Kamocka;Xiaomin Liu;Jian Mu;Danny Chen;Elliot Rosen
  • 通讯作者:
    Elliot Rosen
Modeling study of the impact of actomyosin contractility on cell proliferation in the <em>Drosophila</em> wing imaginal disc
  • DOI:
    10.1016/j.bpj.2022.11.1545
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Jennifer Rangel Ambriz;Nilay Kumar;Kevin Tsai;Mayesha S. Mim;Weitao Chen;Jeremiah J. Zartman;Mark Alber
  • 通讯作者:
    Mark Alber
Durotaxis and extracellular matrix degradation promote the clustering of cancer cells
趋刚性运动和细胞外基质降解促进癌细胞的聚集
  • DOI:
    10.1016/j.isci.2025.111883
  • 发表时间:
    2025-03-21
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Mykhailo Potomkin;Oleg Kim;Yuliya Klymenko;Mark Alber;Igor S. Aranson
  • 通讯作者:
    Igor S. Aranson
Multi-Scale Models of Deformation of Blood Clots
  • DOI:
    10.1016/j.bpj.2018.11.1751
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Mark Alber;Shixin Xu;Zhiliang Xu;Oleg Kim;Samuel Britton;Rustem Litvinov;John Weisel
  • 通讯作者:
    John Weisel

Mark Alber的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Alber', 18)}}的其他基金

Conference: Workshop on Predictive Modeling in Biology and Medicine
会议:生物学和医学预测模型研讨会
  • 批准号:
    2331170
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
MODULUS: Integrative multiscale modeling and multimodal experiments to decode systems-level molecular mecanisms of epithelial systems
MODULUS:综合多尺度建模和多模态实验来解码上皮系统的系统级分子机制
  • 批准号:
    2029814
  • 财政年份:
    2020
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Combined Modeling and Experimental Study of the Mechanisms of Growth Patterns in Stem Cell Homeostasis in Plants
植物干细胞稳态生长模式机制的联合建模与实验研究
  • 批准号:
    1762063
  • 财政年份:
    2018
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Integrating Multiscale Modeling and in vivo Experiments for Studying Blood Clot Development
整合多尺度建模和体内实验来研究血凝块的形成
  • 批准号:
    0800612
  • 财政年份:
    2008
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
AMS-SS: Multiscale stochastic model of myxobacteria dynamics
AMS-SS:粘细菌动力学的多尺度随机模型
  • 批准号:
    0719895
  • 财政年份:
    2007
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Acquisition of the Notre Dame Biocomplexity Computer Cluster
收购圣母大学生物复杂性计算机集群
  • 批准号:
    0420980
  • 财政年份:
    2004
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Phase Shift Phenomenon for Perturbed Evolution Equations and Applications to Nonlinear Optics
数学科学:微扰演化方程的相移现象及其在非线性光学中的应用
  • 批准号:
    9626672
  • 财政年份:
    1996
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Optical Solitons and Semiclassical Solutions of the Quantum Nonlinear Schrodinger Equation
数学科学:光学孤子和量子非线性薛定谔方程的半经典解
  • 批准号:
    9508711
  • 财政年份:
    1995
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Integrable Equations: Complex Geometric Phases and Geometric Asymptotics
数学科学:非线性可积方程:复杂几何相位和几何渐近
  • 批准号:
    9403861
  • 财政年份:
    1994
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
  • 批准号:
    2348712
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
  • 批准号:
    2338641
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
NewDataMetrics: Econometrics for New Data: Theory, Methods, and Applications
NewDataMetrics:新数据的计量经济学:理论、方法和应用
  • 批准号:
    EP/Z000335/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Research Grant
NEWWAVE: New methods for analysing travelling waves in discrete systems with applications to neuroscience
NEWWAVE:分析离散系统中行波的新方法及其在神经科学中的应用
  • 批准号:
    EP/Y027531/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Fellowship
Symmetry Methods for Discrete Equations and Their Applications
离散方程的对称性方法及其应用
  • 批准号:
    24K06852
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
REU Site: Research on Computational Methods in High Performance Computing and Their Applications to Computational Sciences
REU 网站:高性能计算中的计算方法及其在计算科学中的应用研究
  • 批准号:
    2348884
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Applications of Algebraic and Topological Methods in Graph Theory Throughout the Sciences
LEAPS-MPS:代数和拓扑方法在图论中在整个科学领域的应用
  • 批准号:
    2313262
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Bayesian Learning for Spatial Point Processes: Theory, Methods, Computation, and Applications
空间点过程的贝叶斯学习:理论、方法、计算和应用
  • 批准号:
    2412923
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Learning Methods and Applications for Real-World Object Detection
现实世界物体检测的学习方法和应用
  • 批准号:
    23K16896
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of Theoretical Design Methods of Catalysts Based on Electronic Structure Theory and Their Applications to Design and Development of High-Performance Molecular Catalysts
基于电子结构理论的催化剂理论设计方法发展及其在高性能分子催化剂设计与开发中的应用
  • 批准号:
    22KJ0003
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了