MRI: Acquisition of Instrumentation for Optical Propagation Loss Measurement in Novel Waveguide Materials

MRI:购买用于新型波导材料中光传播损耗测量的仪器

基本信息

  • 批准号:
    0520707
  • 负责人:
  • 金额:
    $ 10.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-01 至 2007-08-31
  • 项目状态:
    已结题

项目摘要

Integrated optical waveguides for information processing and transmission are characterized by core and cladding structures of slightly different refractive index. The refractive index contrast guides light rays within the core via total internal reflection. There is considerable motivation to develop materials synthesis and processing techniques that free integrated optics from complex vapor deposition fabrication processes. There is likewise demand for new materials and architectures that offer increased bandwidth and greater compositional flexibility than conventional silica-glass based and crystalline waveguide materials. We present results demonstrating that polymeric, glass nanocomposite, and colloidal sol-gel materials are highly promising waveguide materials that combine compositional flexibility with fast and relatively inexpensive processing requirements. Initial waveguide propagation loss investigations reveal these materials exhibit losses of order 2 dB/cm. Ongoing studies reveal that thermal reflowing of sol-gel waveguides is likely to reduce this loss below 1 dB/cm. Continuing investigation of polymeric guides has demonstrated that fluorinated branched electro-optic dyes can be incorporated in low loss polymer hosts with thin-film losses of well below 1 dB/cm. Both studies provide compelling evidence that these are promising new materials for waveguide applications. In addition, we present important results demonstrating that waveguide design, fabrication, and characterization is an excellent training opportunity for advanced physics and chemistry undergraduates, and fills a critical need in preparing students for advanced study in materials science. Continued progress on both research and student training is contingent on the acquisition of precision positioning and imaging equipment for the accurate measurement of optical propagation loss. Materials research has transformed the technological landscape through innovations such as optical fibers and lasers. For example, highly efficient semiconductor lasers are well-matched to low-loss optical fiber, resulting in a wealth of telecommunications developments such as high speed Internet transmission. The devices which prepare light signals for eventual transmission over fiber optic lines are referred to as integrated optics. All integrated optics have in common material structures called waveguides that confine light signals to well-defined regions smaller than the thickness of a human hair. There is considerable motivation for materials synthesis and processing techniques that simplify the fabrication of waveguide structures. At the same time, there is an urgent need to make the study of waveguide materials more accessible to undergraduate science students, in order to provide properly trained students for both graduate research and industry. Several promising approaches that satisfy both the technological and training needs of the materials research community are based on polymeric and colloidal sol-gel materials. Waveguides can be fabricated from these materials using simple coating techniques, and both offer considerable compositional flexibility. The utility of any novel waveguide material depends on its ability to transmit light with minimal attenuation, thus making the assessment of optical losses due to absorption and scattering an essential component of any waveguide materials research effort. Our preliminary results strongly suggest that polymeric and colloidal sol-gel materials can yield optical losses suitable for applications. Continued progress on both research and student training is contingent on the development of precision positioning and imaging equipment for the accurate measurement of optical propagation loss.
用于信息处理和传输的集成光波导的特点是芯和包层结构的折射率略有不同。折射率对比度通过全内反射引导核心内的光线。人们有相当大的动力开发材料合成和加工技术,将集成光学器件从复杂的气相沉积制造过程中解放出来。与传统的硅基玻璃和晶体波导材料相比,对提供更高带宽和更大组成灵活性的新材料和结构的需求也同样存在。我们提出的结果表明,聚合物、玻璃纳米复合材料和胶体溶胶-凝胶材料是非常有前途的光波导材料,它结合了组成的灵活性和快速和相对廉价的处理要求。初步的波导波传播损耗研究表明,这些材料的损耗约为2分贝/厘米。正在进行的研究表明,溶胶-凝胶波导的热回流很可能将这一损耗降低到1分贝/厘米以下。对聚合物导向器的持续研究表明,氟化支化电光染料可以掺入低损耗聚合物主体中,其薄膜损耗远低于1分贝/厘米。这两项研究都提供了令人信服的证据,表明这些材料是很有希望用于波导应用的新材料。此外,我们还介绍了重要的结果,证明了波导的设计、制造和表征是高等物理和化学本科生的一个极好的培训机会,并满足了学生为材料科学的高级学习做准备的关键需求。研究和学生培训方面的持续进展取决于能否获得准确测量光传播损耗的精确定位和成像设备。材料研究通过光纤和激光等创新改变了技术格局。例如,高效率的半导体激光器与低损耗光纤很好地匹配,导致了大量的电信发展,如高速互联网传输。为光纤线路上的最终传输准备光信号的设备被称为集成光学器件。所有集成光学器件都有共同的材料结构,称为波导,它将光信号限制在比人类头发厚度更小的明确区域。人们对简化波导结构制造的材料合成和加工技术有相当大的需求。与此同时,迫切需要使本科生能够更容易地学习波导材料,以便为研究生研究和工业提供适当培训的学生。满足材料研究界技术和培训需求的几种有希望的方法是基于聚合物和胶体溶胶-凝胶材料。使用简单的镀膜技术,就可以用这些材料制作波导,而且两者都提供了相当大的成分灵活性。任何一种新型波导材料的效用都取决于其在最小衰减的情况下传输光的能力,因此,由于吸收和散射造成的光学损失的评估成为任何波导材料研究工作的重要组成部分。我们的初步结果有力地表明,聚合物和胶体溶胶-凝胶材料可以产生适合于应用的光学损耗。在研究和学生培训方面的持续进展取决于为准确测量光传播损耗而开发的精确定位和成像设备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David McGee其他文献

Shallow carbonate geochemistry in the Bahamas since the last interglacial period
末次间冰期以来巴哈马浅层碳酸盐岩地球化学
  • DOI:
    10.1016/j.epsl.2023.118566
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Stacey Edmonsond;Matthew D. Nadeau;Andrew C. Turner;Ziman Wu;Emily C. Geyman;A. Ahm;Blake Dyer;Sergey Oleynik;David McGee;Daniel Stolper;John A. Higgins;Adam Maloof
  • 通讯作者:
    Adam Maloof
Linking Glacial-Interglacial states to multiple equilibria 1 of climate 2
将冰期-间冰期状态与气候 2 的多重平衡 1 联系起来
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Ferreira;John Marshall;Takamitsu Ito;David McGee
  • 通讯作者:
    David McGee
Past abrupt changes, tipping points and cascading impacts in the Earth system
过去地球系统中的突然变化、临界点和连锁影响
  • DOI:
    10.1038/s41561-021-00790-5
  • 发表时间:
    2021-07-29
  • 期刊:
  • 影响因子:
    16.100
  • 作者:
    Victor Brovkin;Edward Brook;John W. Williams;Sebastian Bathiany;Timothy M. Lenton;Michael Barton;Robert M. DeConto;Jonathan F. Donges;Andrey Ganopolski;Jerry McManus;Summer Praetorius;Anne de Vernal;Ayako Abe-Ouchi;Hai Cheng;Martin Claussen;Michel Crucifix;Gilberto Gallopín;Virginia Iglesias;Darrell S. Kaufman;Thomas Kleinen;Fabrice Lambert;Sander van der Leeuw;Hannah Liddy;Marie-France Loutre;David McGee;Kira Rehfeld;Rachael Rhodes;Alistair W. R. Seddon;Martin H. Trauth;Lilian Vanderveken;Zicheng Yu
  • 通讯作者:
    Zicheng Yu
Recent Constraints on MIS 3 Sea Level Support Role of Continental Shelf Exposure as a Control on Indo‐Pacific Hydroclimate
大陆架暴露控制印度洋-太平洋水文气候的 MIS 3 海平面支持作用的最新限制
Investigating the use of <sup>232</sup>Th/<sup>230</sup>Th as a dust proxy using co-located seawater and sediment samples from the low-latitude North Atlantic
  • DOI:
    10.1016/j.gca.2017.07.033
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    George H. Rowland;Hong Chin Ng;Laura F. Robinson;Jerry F. McManus;Kais J. Mohamed;David McGee
  • 通讯作者:
    David McGee

David McGee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David McGee', 18)}}的其他基金

RUI: Spatial light modulator technology for the on-demand fabrication of optical microstructures in polarization-sensitive materials
RUI:用于在偏振敏感材料中按需制造光学微结构的空间光调制器技术
  • 批准号:
    2024118
  • 财政年份:
    2020
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Spatial Light Modulator System for Research and Education in Optical Materials, Bioscience, and Human-Computer Interaction
MRI:获取空间光调制器系统,用于光学材料、生物科学和人机交互的研究和教育
  • 批准号:
    1919557
  • 财政年份:
    2019
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Mantle Dynamics, Lithospheric Structure, and Topographic Evolution of the Southeastern US Continental Margin
合作研究:地幔动力学、岩石圈结构和美国东南部大陆边缘的地形演化
  • 批准号:
    1251329
  • 财政年份:
    2013
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Continuing Grant
RUI: Orientational Relaxation of Chromophore Order in Nonlinear Optical Block Copolymers
RUI:非线性光学嵌段共聚物中发色团顺序的取向弛豫
  • 批准号:
    1138416
  • 财政年份:
    2011
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Continuing Grant
RUI: Orientational Relaxation of Chromophore Order in Nonlinear Optical Block Copolymers
RUI:非线性光学嵌段共聚物中发色团顺序的取向弛豫
  • 批准号:
    1005462
  • 财政年份:
    2010
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Continuing Grant
RUI: Photodegradation and Poling Alignment Stability of Branched azo Chromophores in Electro-Optic Polymer Blends
RUI:电光聚合物共混物中支化偶氮发色团的光降解和极化配向稳定性
  • 批准号:
    0504105
  • 财政年份:
    2005
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Standard Grant
RUI: Phase Stability and Chromophore Reorientation in Photorefractive Polymer Composites
RUI:光折变聚合物复合材料中的相稳定性和发色团重新取向
  • 批准号:
    0103817
  • 财政年份:
    2001
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Continuing Grant
Materials Science and Nonlinear Optics in Physics and Chemistry Laboratories
物理和化学实验室中的材料科学和非线性光学
  • 批准号:
    9996277
  • 财政年份:
    1999
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Standard Grant
Materials Science and Nonlinear Optics in Physics and Chemistry Laboratories
物理和化学实验室中的材料科学和非线性光学
  • 批准号:
    9850824
  • 财政年份:
    1998
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Standard Grant

相似海外基金

MRI: Track 1 Acquisition of Instrumentation for Marine Metal-Organic and Metalloproteomic Analyses
MRI:第 1 轨道采购海洋金属有机和金属蛋白质组分析仪器
  • 批准号:
    2320496
  • 财政年份:
    2023
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Standard Grant
MRI: Acquisition of instrumentation for a node in the global SONG observing network for ultra high-precision seismology of bright stars
MRI:为全球 SONG 观测网络中的一个节点采购仪器,以进行亮星超高精度地震学研究
  • 批准号:
    2215941
  • 财政年份:
    2022
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Standard Grant
MRI: Acquisition of Instrumentation for Sediment Description, SIO Geological Core Repository
MRI:购买沉积物描述仪器,SIO 地质岩心存储库
  • 批准号:
    2216130
  • 财政年份:
    2022
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a GPU-based High Performance Computing Instrumentation for Smart City Research at Cleveland State University
MRI:克利夫兰州立大学为智能城市研究采购基于 GPU 的高性能计算仪器
  • 批准号:
    2215388
  • 财政年份:
    2022
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Standard Grant
MRI: Acquisition of LA-HR-ICPMS instrumentation for climate, environmental, ecosystem, and engineering research at the University of Maine
MRI:在缅因大学购买用于气候、环境、生态系统和工程研究的 LA-HR-ICPMS 仪器
  • 批准号:
    2215771
  • 财政年份:
    2022
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Standard Grant
MRI: Acquisition of Instrumentation for Real-Time Molecular Level Measurement of Atmospheric Gas- and Particle-Phase Com pounds
MRI:获取用于大气气体和颗粒相化合物实时分子水平测量的仪器
  • 批准号:
    2117389
  • 财政年份:
    2021
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Standard Grant
MRI: Acquisition of Advanced Solid-State NMR Instrumentation to Investigate Novel Biological & Engineered Materials at CCNY
MRI:购买先进的固态 NMR 仪器来研究新型生物
  • 批准号:
    2117799
  • 财政年份:
    2021
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Standard Grant
MRI: Acquisition of 3D Imaging and Printing Instrumentation to Support Interdisciplinary Research at Indiana University of Pennsylvania
MRI:收购 3D 成像和打印仪器以支持宾夕法尼亚州印第安纳大学的跨学科研究
  • 批准号:
    2018468
  • 财政年份:
    2020
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Standard Grant
MRI: Acquisition of High-Resolution Visualization Instrumentation to Support Collaborative, Interdisciplinary Research and Education
MRI:采购高分辨率可视化仪器以支持协作、跨学科研究和教育
  • 批准号:
    2018999
  • 财政年份:
    2020
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Standard Grant
MRI: Acquisition of In-Situ Electron Microscopy Instrumentation to Monitor Kinetic Processes in Complex Materials and Molecules
MRI:获取原位电子显微镜仪器来监测复杂材料和分子的动力学过程
  • 批准号:
    1828628
  • 财政年份:
    2018
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了