The Ideal Nanowire Transistor-Materials Development for Contact-Doped ZnO Nanowires
接触掺杂 ZnO 纳米线的理想纳米线晶体管材料开发
基本信息
- 批准号:172125987
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2010
- 资助国家:德国
- 起止时间:2009-12-31 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ZnO nanowires with a diameter of about 20 to 100 nm are of interest for high-performance field-effect transistors (FETs) and integrated circuits for flexible electronics. Single-crystalline ZnO nanowires are readily prepared from solution, can be suspended in a variety of solvents to allow deposition and alignment on a variety of substrates, and have electron mobilities exceeding 20 cm2/Vs. For scaling purpose it is necessary to have a strategy for reducing the channel length of the devices. But the performance of ZnO nanowire FETs with short channel length is limited by the large contact resistance that results from the energy barrier at the interface between the ZnO and the metal contacts. Also, making nanowire FETs with short channels introduces the challenge of connecting small objects using high-throughput (i.e., low-resolution) patterning techniques. We propose to solve these challenges by creating ZnO nanowires with self-aligned, selectively doped contacts. We will demonstrate the operation of these “ideal” n-i-n nanowires by making FETs and circuits on a single ZnO nanowire using an ultra-thin gate dielectric based on a self-assembled monolayer. The total length of the nanowires will exceed 10 μm, making them accessible by conventional photolithography or printing. Owing to the doped contact regions, the contact resistance will be greatly reduced. And by adjusting the length of the intrinsic region at the center of the nanowires we will obtain FETs with a channel length of less than 100 nm.
直径约为20至100 nm的ZnO纳米线对于高性能场效应晶体管(FET)和柔性电子器件的集成电路是有意义的。单晶ZnO纳米线很容易从溶液中制备,可以悬浮在各种溶剂中,以允许在各种衬底上沉积和对准,并且具有超过20 cm 2/Vs的电子迁移率。为了缩放的目的,有必要有一个策略,用于减少器件的沟道长度。但是,由于ZnO与金属接触界面处的能垒导致的大接触电阻限制了短沟道长度ZnO纳米线FET的性能。此外,制造具有短沟道的纳米线FET引入了使用高吞吐量(即,低分辨率)图案化技术。我们建议解决这些挑战,通过创建ZnO纳米线与自对准,选择性掺杂接触。我们将展示这些“理想”的n-i-n纳米线的操作,通过使用基于自组装单层的超薄栅极电介质在单个ZnO纳米线上制作FET和电路。纳米线的总长度将超过10 μm,使得它们可以通过传统的光刻或印刷来实现。由于掺杂的接触区,接触电阻将大大降低。通过调节纳米线中心本征区的长度,我们将获得沟道长度小于100 nm的FET。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-performance ZnO nanowire transistors with aluminum top-gate electrodes and naturally formed hybrid self-assembled monolayer/AlO(x) gate dielectric.
- DOI:10.1021/nn501484e
- 发表时间:2014-06
- 期刊:
- 影响因子:17.1
- 作者:D. Kälblein;H. Ryu;F. Ante;B. Fenk;K. Hahn;K. Kern;H. Klauk
- 通讯作者:D. Kälblein;H. Ryu;F. Ante;B. Fenk;K. Hahn;K. Kern;H. Klauk
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Hagen Klauk其他文献
Dr. Hagen Klauk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dr. Hagen Klauk', 18)}}的其他基金
Improving the Long-Term Reliability of Digital Organic Circuits (ILDOC)
提高数字有机电路 (ILDOC) 的长期可靠性
- 批准号:
323274811 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Megahertz Organic Thin-Film Transistors for Flexible Biomedical Systems
用于灵活生物医学系统的兆赫有机薄膜晶体管
- 批准号:
272380424 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
相似海外基金
Continuous, Large-scale Manufacturing of Functionalized Silver Nanowire Transparent Conducting Films
功能化银纳米线透明导电薄膜的连续大规模制造
- 批准号:
2422696 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
FastMOT - Fast gated superconducting nanowire camera for multi-functional optical tomograph
FastMOT - 用于多功能光学断层扫描的快速门控超导纳米线相机
- 批准号:
10063660 - 财政年份:2023
- 资助金额:
-- - 项目类别:
EU-Funded
A Path to Superconducting Nanowire Readout of Xe- based detectors
Xe 探测器的超导纳米线读数之路
- 批准号:
ST/Y509929/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Innovation of electromigration-driven fine-injection method for nanowire scaling up
用于纳米线放大的电迁移驱动精细注射方法的创新
- 批准号:
23H01300 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Nanowire Frontiers: Materials and Devices
纳米线前沿:材料与器件
- 批准号:
RGPIN-2018-04015 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Development of nanowire hybrid integrated devices
纳米线混合集成器件的开发
- 批准号:
22H00202 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Ultrafast Terahertz Polarimetry Enabled by Semiconductor Nanowire Sensors
半导体纳米线传感器实现超快太赫兹偏振测量
- 批准号:
EP/W018489/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
SemiSynBio-III: Precision assembly and electronic properties of protein nanowire circuits using DNA origami
SemiSynBio-III:使用 DNA 折纸技术实现蛋白质纳米线电路的精密组装和电子特性
- 批准号:
2227399 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Printable nanowire-based materials for the seamless integration of electronic functionality into textiles
可印刷纳米线材料,用于将电子功能无缝集成到纺织品中
- 批准号:
RGPIN-2019-04294 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
The mechanism of electromigration studied by real-time ultrasound monitoring for single nanowire
单根纳米线实时超声监测研究电迁移机理
- 批准号:
22H01908 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)