BIC: Large-Scale DNA Associative Memories
BIC:大规模 DNA 联想存储器
基本信息
- 批准号:0523858
- 负责人:
- 金额:$ 31.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-15 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Intellectual Merit:In a DNA memory, information is encoded into DNA sequences and retrieved through template-matching hybridization reactions among DNA oligonucleotides. The template matching, hybridization reaction between DNA oligonucleotides is important in biotechnology and medicine (DNA microarrays),and nanotechnology (DNA directed self-assembly of nanostructures).The project should lead to a better understanding of how information can be encoded into an ensemble of hybridizing DNA oligonucleotides, and to better models andways of characterizing large ensembles.Simple protocols can be used to manipulate the contents of the memory to achieve information processing. In the statistical DNA memory, an ensemble of DNA molecules are trained with test tube protocols to reproduce particular input/output mappings, similar to artificial neural networks. Rather than a one to one mapping, information is encoded probabilistically into the DNA sequences and their hybridization interactions. These two architectures will be experimentally tested and modeled computationally and physically, and finally simulated to better understand how information is stored and manipulated through DNA template-matching hybridization reactions.Broader Impacts:Graduate students will participate in the project, and thus, will be trained in the interdisciplinary knowledge and methods required of computational research using biological systems. They will be mentored to produce research publications, attend professional conferences and write graduate theses. Curricular modules associated with the research will be developed for incorporation into both biological and computer curricula. These modules will provide instruction and demonstrations in the topic that show the interplay between the disciplines, as well as experimental, theoretical, and simulation methods. The goal is to produce students that are better prepared for careers and challenges in the emerging synthesis of biology and computation. The project results will be disseminated through a dedicated web site, and through conference and journals in the relevant disciplines.
智力优势:在DNA记忆中,信息被编码到DNA序列中,并通过DNA寡核苷酸之间的模板匹配杂交反应来检索。模板匹配、DNA寡核苷酸之间的杂交反应在生物技术和医学(DNA微阵列)以及纳米技术(DNA引导的纳米结构自组装)中具有重要意义。该项目将有助于更好地理解如何将信息编码到杂交DNA寡核苷酸的集合中,以及更好的模型和表征大集合的方法。可以使用简单的协议来操作存储器的内容,以实现信息处理。在统计DNA记忆中,一组DNA分子用试管协议进行训练,以重现特定的输入/输出映射,类似于人工神经网络。而不是一对一的映射,信息被概率编码到DNA序列和它们的杂交相互作用中。这两种架构将进行实验测试,计算和物理建模,最后进行模拟,以更好地了解信息是如何通过DNA模板匹配杂交反应存储和操作的。更广泛的影响:研究生将参与该项目,因此,将在跨学科的知识和方法上进行训练,这些知识和方法是使用生物系统进行计算研究所必需的。他们将接受指导,制作研究出版物,参加专业会议和撰写研究生论文。将开发与研究相关的课程模块,以便纳入生物和计算机课程。这些模块将提供指示和演示的主题,显示学科之间的相互作用,以及实验,理论和模拟方法。我们的目标是培养学生更好地为新兴的生物学和计算综合领域的职业和挑战做好准备。项目结果将通过一个专门的网站以及通过有关学科的会议和期刊传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Russell Deaton其他文献
<em>In vitro</em> molecular machine learning algorithm via symmetric internal loops of DNA
- DOI:
10.1016/j.biosystems.2017.04.005 - 发表时间:
2017-08-01 - 期刊:
- 影响因子:
- 作者:
Ji-Hoon Lee;Seung Hwan Lee;Christina Baek;Hyosun Chun;Je-hwan Ryu;Jin-Woo Kim;Russell Deaton;Byoung-Tak Zhang - 通讯作者:
Byoung-Tak Zhang
Self-assembly of generative heterogeneous electric circuits
生成式异质电路的自组装
- DOI:
10.1038/s41598-025-99301-4 - 发表时间:
2025-05-02 - 期刊:
- 影响因子:3.900
- 作者:
Max Garzon;Russell Deaton - 通讯作者:
Russell Deaton
Russell Deaton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Russell Deaton', 18)}}的其他基金
EAGER: Self-Assembly of Complex Systems
EAGER:复杂系统的自组装
- 批准号:
1315129 - 财政年份:2012
- 资助金额:
$ 31.64万 - 项目类别:
Standard Grant
EAGER: Self-Assembly of Complex Systems
EAGER:复杂系统的自组装
- 批准号:
1049719 - 财政年份:2011
- 资助金额:
$ 31.64万 - 项目类别:
Standard Grant
A Workshop on Undergraduate Education in Emerging Technologies at The 15th International Meeting on DNA Computing
第十五届国际 DNA 计算会议新兴技术本科教育研讨会
- 批准号:
0840708 - 财政年份:2008
- 资助金额:
$ 31.64万 - 项目类别:
Standard Grant
NUE: Integrating Nanoscale Science and Technology into Introductory Computer Science Courses
NUE:将纳米科学技术融入计算机科学入门课程
- 批准号:
0407218 - 财政年份:2004
- 资助金额:
$ 31.64万 - 项目类别:
Standard Grant
Bio-QuBIC: NSF QuBIC: Modeling and Manufacture of Huge DNA Oligonucleotide Libraries for Computation
Bio-QuBIC:NSF QuBIC:用于计算的大型 DNA 寡核苷酸库的建模和制造
- 批准号:
0130385 - 财政年份:2001
- 资助金额:
$ 31.64万 - 项目类别:
Standard Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 31.64万 - 项目类别:
Fellowship
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
- 批准号:
EP/Y027906/1 - 财政年份:2024
- 资助金额:
$ 31.64万 - 项目类别:
Research Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
$ 31.64万 - 项目类别:
Standard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
$ 31.64万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 31.64万 - 项目类别:
Standard Grant
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 31.64万 - 项目类别:
Continuing Grant
Continuous, Large-scale Manufacturing of Functionalized Silver Nanowire Transparent Conducting Films
功能化银纳米线透明导电薄膜的连续大规模制造
- 批准号:
2422696 - 财政年份:2024
- 资助金额:
$ 31.64万 - 项目类别:
Standard Grant
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
- 批准号:
2339956 - 财政年份:2024
- 资助金额:
$ 31.64万 - 项目类别:
Continuing Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
$ 31.64万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 31.64万 - 项目类别:
Standard Grant