BioCmp: Reconstructing Metabolic and Transcriptional Networks using Bayesian State Space Models

BioCmp:使用贝叶斯状态空间模型重建代谢和转录网络

基本信息

  • 批准号:
    0524331
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-15 至 2009-06-30
  • 项目状态:
    已结题

项目摘要

Better understanding of the processes involved in the physiology of bacteria can potentially have tremendous impact on both therapeutic approaches to infectious diseases and metabolic engineering applications in biotechnology.In this project, Drs. David L. Wild and Matthew J. Beal, of the Keck Graduate Institute in Claremont, California and the State University of New York in Buffalo, New York, respectively, are proposing to build statistical models of time series data, with a view to leveraging sophisticated Bayesian methods to "reverse-engineer" an organism's complex genetic regulatory networks from the raw measurements of gene expression and metabolite concentration.Drs. Wild and Beal will apply their techniques to an ideal experimental system: the response of the bacterium E coli to acid stress, which enables pathogenic E. coli to survive passage through the acidic environment of the stomach and gastro-intestinal tract. They will collaborate with experimentalists Drs. Francesco Falciani and Mark Viant at the University of Birmingham, UK, who will provide data from both pathogenic and non-pathogenic strains of this bacterium. Predictions made by Wild and Beal's models can then be tested and explored back in the laboratory.Recent advances in functional genomics technologies have given biologists unprecedented access to measurements of the inner workings of complex biological organisms. Using microarray expression profiling, it is now possible to measure the expression levels of tens of thousands of genes in just a single biological experiment, conducted over several days in the form of a time series. Contrast this to the situation only ten years ago when it was rather unusual for a biologist to measure the expression of more than just one or two carefully chosen genes. As well as high-throughput gene expression methods, the new technology of "metabolomics" has opened the door to measuring even more information in the form of the concentration of hundreds of metabolites that are also crucial players in the complex cellular processes under study.This overwhelming amount of data challenges traditional methods of analysis, especially when one considers the element of time, because now one must consider how certain genes regulate the expression of other genes from one time point in the experiment to the next. A key ingredient in Drs. Wild and Beal's models is the inclusion of "hidden factors" that help to explain the correlation structure of the observed measurements. These factors may correspond to unmeasured quantities that were not captured during the experiment and often reduce the number of direct gene-to-gene dependencies, leaving the resulting networks much more interpretable for the biologist. A natural question arises: how many hidden factors should be used to account for the dependencies in the observed data? This is answered by employing Bayesian model selection, a well-founded principle used in machine learning and statistics to choose between models of differing complexities. Their models also use a technique called Automatic Relevance Determination to further simplify the models so that only those genes and metabolites that are participating players in the process are retained in the final model.Another advantage of the Bayesian framework is that existing information about known network connections and interactions, derived from the literature or commercial databases, can be included in the model. The output of the modeling procedure is a probabilistic reckoning of which genetic regulatory networks are plausible or not. These probabilities can be used to design future biological experiments targeted at specific genes, with a view to corroborating the model's in silico predictions or to simply probe a relatively uncharted network.
更好地了解细菌生理过程可能对传染病的治疗方法和生物技术中的代谢工程应用产生巨大影响。Wild和Matthew J.比尔分别来自加州州克莱蒙的Keck研究所和纽约州布法罗的纽约州立大学,他们提议建立时间序列数据的统计模型,以期利用复杂的贝叶斯方法进行“逆向工程”通过基因表达和代谢物浓度的原始测量来了解生物体复杂的基因调节网络。怀尔德博士和比尔博士将适用他们的技术是一个理想的实验系统:大肠杆菌对酸胁迫的反应,这使得致病性大肠杆菌。大肠杆菌在胃和胃肠道的酸性环境中存活。他们将与英国伯明翰大学的实验学家Francesco Falciani和Mark Viant博士合作,他们将提供这种细菌的致病性和非致病性菌株的数据。然后,怀尔德和比尔模型做出的预测可以在实验室中进行测试和探索。功能基因组学技术的最新进展为生物学家提供了前所未有的机会来测量复杂生物有机体的内部运作。使用微阵列表达谱,现在可以在一个单一的生物实验中测量数万个基因的表达水平,以时间序列的形式进行了几天。这与十年前的情况形成了鲜明的对比,当时生物学家测量不止一两个精心挑选的基因的表达是相当罕见的。 除了高通量基因表达方法外,“代谢组学”新技术还为测量数百种代谢物浓度形式的更多信息打开了大门,这些代谢物在所研究的复杂细胞过程中也是至关重要的参与者。大量的数据挑战了传统的分析方法,特别是当考虑到时间因素时,因为现在我们必须考虑从实验的一个时间点到下一个时间点,某些基因如何调节其他基因的表达。怀尔德博士和比尔博士的模型中的一个关键因素是包含了“隐藏因素”,这些因素有助于解释观察到的测量结果的相关结构。 这些因素可能对应于在实验过程中没有捕获的未测量的数量,并且通常减少了直接基因对基因依赖性的数量,从而使生物学家更容易解释所产生的网络。 一个自然的问题出现了:应该使用多少隐藏的因素来解释观察到的数据中的依赖关系?这是通过使用贝叶斯模型选择来回答的,贝叶斯模型选择是机器学习和统计学中用于在不同复杂性的模型之间进行选择的一个有充分依据的原则。 他们的模型还使用了一种称为自动相关性确定的技术来进一步简化模型,以便在最终模型中只保留参与该过程的基因和代谢物。贝叶斯框架的另一个优点是,来自文献或商业数据库的有关已知网络连接和相互作用的现有信息可以包含在模型中。 建模过程的输出是对哪些基因调控网络是合理的或不合理的概率推算。这些概率可用于设计未来针对特定基因的生物实验,以证实模型的计算机预测或简单地探测相对未知的网络。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Wild其他文献

Design for manufacturing: use of a spreadsheet model of manufacturability to optimize product design and development
  • DOI:
    10.1007/s00163-003-0030-8
  • 发表时间:
    2003-03-21
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    James La Trobe-Bateman;David Wild
  • 通讯作者:
    David Wild
Imperfectionist Aesthetics in Art and Everyday Life
艺术与日常生活中的不完美主义美学
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Cheyne;Andy Hamilton;Gordon Graham;Ted Gioia;David Wild;Lara Pearson;Karen lang;Eda Keskin;Kaz Oishi;Yasuo Kobayashi;Gregory Dunne;Fiona Tomkinson;Joseph S. O'Leary;Yuriko Saito;Thomas Docherty;James Kirway;Lucas Scripter;Laura Di S
  • 通讯作者:
    Laura Di S

David Wild的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Wild', 18)}}的其他基金

Bayesian modelling for developmental systems biology
发育系统生物学的贝叶斯建模
  • 批准号:
    EP/R014337/1
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grant
iPlant UK
英国 iPlant
  • 批准号:
    BB/M018431/1
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Bayesian Computation in Systems and Synthetic Biology
系统和合成生物学中的贝叶斯计算
  • 批准号:
    EP/J020281/1
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: Cheminformatics OLCC
合作研究:化学信息学 OLCC
  • 批准号:
    1140146
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Managing the Data Explosion in Post-Genomic Biology with Fast Bayesian Computational Methods
使用快速贝叶斯计算方法管理后基因组生物学中的数据爆炸
  • 批准号:
    EP/F027400/1
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grant

相似海外基金

Reconstructing the lost cartilaginous epiphyses in extinct archosaurs' limbs
重建已灭绝的主龙四肢中丢失的软骨骨骺
  • 批准号:
    EP/Y029356/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
RII Track-4:NSF: Reconstructing Reputation in the American South
RII Track-4:NSF:在美国南部重建声誉
  • 批准号:
    2327372
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: EAR-PF: Reconstructing the role of beavers in driving Holocene landscape evolution and resilience in the Sierra Nevada range, California
博士后奖学金:EAR-PF:重建河狸在推动加州内华达山脉全新世景观演化和恢复力方面的作用
  • 批准号:
    2305572
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award
Cells to ecosystems: fossil xylem is the missing link in reconstructing water use by plants, forests, and global vegetation in deep time
细胞到生态系统:木质部化石是重建植物、森林和全球植被深层用水的缺失环节
  • 批准号:
    2323169
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Reconstructing evolutionary history of termite collective nest construction
重建白蚁集体筑巢的进化史
  • 批准号:
    DE240100352
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Reconstructing the Formation of the Milky Way with Metal-Poor Stars
用贫金属恒星重建银河系的形成
  • 批准号:
    2307436
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Reconstructing Holocene glacier lengths through time to address climate model-data disagreements
合作研究:随着时间的推移重建全新世冰川长度以解决气候模型数据分歧
  • 批准号:
    2303294
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Reconstructing a Critical Theory of Sovereignty: Based on the Encounter of Karl Marx and Carl Schmitt
重建批判的主权理论:基于卡尔·马克思和卡尔·施密特的相遇
  • 批准号:
    23K12036
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Molecular fossil imaging and chemical analysis: reconstructing palaeoecological, palaeoenvironmental and phylogenetic relationships with molluscs
分子化石成像和化学分析:重建与软体动物的古生态、古环境和系统发育关系
  • 批准号:
    23KJ0818
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Reconstructing the evolution of monoamines as neurotransmitters
重建单胺作为神经递质的进化
  • 批准号:
    BB/W010305/2
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了