CT-T: Goal-Oriented Privacy-Preservation
CT-T:目标导向的隐私保护
基本信息
- 批准号:0524671
- 负责人:
- 金额:$ 160万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Access to many important datasets in health care, biomedical informatics, sociology, and homeland security is restricted by HIPAA regulations on the release of detailed "microdata", impeding basic research in fields dependent on such data, and the problem will only get worse as more medical data is collected. A primary focus of this project is to "unlock" such critical datasets by developing techniques and tools to anonymize very large databases. Such tools will facilitate the release of datasets to researchers, while insuring that the privacy of individuals is maintained.Many organizations, including the Census Bureau and departments of health at the local, state, and federal levels, routinely publish aggregated forms of data because they can be used to answer statistical queries over selected subsets of the data. However, existing methods for aggregation have significant weaknesses and proposed improvements scale poorly. In addition, the problem of building accurate predictive models (e.g., decision trees) from aggregated data has not been widely studied. There are many opportunities for building accurate predictive models from data aggregated to preserve privacy; conversely, the possibility of building such models suggests another way that sensitive information can be inadvertently "leaked" even when only aggregated data is published. This project aims to investigate the trade-off between privacy guarantees and the utility of the published data for specific analysis tasks, including: (a) privacy-preserving algorithms for aggregating large data sets, (b) algorithms for building predictive models using aggregated data, and (c) conditions under which accurate predictive models can be constructed from such data.The project team includes the Chief Epidemiologist for the State of Wisconsin, who is the curator for many health-related datasets, a cancer researcher whose research program relies in part on datasets curated by the State, and three computer scientists with expertise in data mining and management.This project will train graduate and undergraduate students at the University of Wisconsin in the tradeoffs between privacy protection and accurate model building, and the results and tools will be widely disseminated through publications and the project's Web site (www-db.cs.wisc.edu/dbprivacy).
医疗保健、生物医学信息学、社会学和国土安全等领域的许多重要数据集的访问受到HIPAA关于发布详细“微数据”的规定的限制,阻碍了依赖这些数据的领域的基础研究,而且随着收集的医疗数据越来越多,这个问题只会变得更糟。该项目的一个主要重点是通过开发匿名非常大的数据库的技术和工具来“解锁”这些关键数据集。这些工具将有助于向研究人员发布数据集,同时确保个人隐私得到维护。许多组织,包括人口普查局和地方、州和联邦各级的卫生部,经常发布汇总形式的数据,因为它们可以用来回答对选定数据子集的统计查询。然而,现有的聚合方法存在明显的缺陷,所提出的改进措施可伸缩性较差。此外,从聚合数据中构建准确的预测模型(例如,决策树)的问题还没有得到广泛的研究。从聚合的数据构建准确的预测模型以保护隐私的机会很多;相反,构建此类模型的可能性表明,即使只发布聚合的数据,敏感信息也可能被无意中“泄露”。该项目旨在调查隐私保障和发布数据对特定分析任务的效用之间的权衡,包括:(A)用于聚合大型数据集的隐私保护算法,(B)用于使用聚合数据构建预测模型的算法,以及(C)从此类数据构建准确预测模型的条件。该项目团队包括威斯康星州首席流行病学家,他是许多与健康相关的数据集的策划人,一名癌症研究人员,其研究计划部分依赖于国家管理的数据集,这个项目将培训威斯康星大学的研究生和本科生,在隐私保护和准确的模型建立之间进行权衡,结果和工具将通过出版物和该项目的网站(www.db.cs.witc.edu/DBPrivacy)广泛传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Naughton其他文献
Jeffrey Naughton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Naughton', 18)}}的其他基金
Collaborative Research: A Comparative Study of Approaches to Cluster- Based Large Scale Data Analysis
协作研究:基于集群的大规模数据分析方法的比较研究
- 批准号:
0843487 - 财政年份:2009
- 资助金额:
$ 160万 - 项目类别:
Standard Grant
CRI: III-COR: Infrastructure for Development and Testing of Next-Generation, Data-Centric Cluster Management Software
CRI:III-COR:用于开发和测试下一代以数据为中心的集群管理软件的基础设施
- 批准号:
0707437 - 财政年份:2007
- 资助金额:
$ 160万 - 项目类别:
Continuing Grant
SCI: Condor DB: Integrating Condor and DBMS Technology
SCI:Condor DB:集成 Condor 和 DBMS 技术
- 批准号:
0515491 - 财政年份:2005
- 资助金额:
$ 160万 - 项目类别:
Standard Grant
CISE Research Infrastructure: MIDSHIP: Managing Image Data for Scalable High Performance
CISE 研究基础设施:MIDSHIP:管理图像数据以实现可扩展的高性能
- 批准号:
9623632 - 财政年份:1996
- 资助金额:
$ 160万 - 项目类别:
Continuing Grant
PYI: Theory and implementation of database systems.
PYI:数据库系统的理论与实现。
- 批准号:
9157357 - 财政年份:1991
- 资助金额:
$ 160万 - 项目类别:
Continuing Grant
Logic-Based Database Query Languages
基于逻辑的数据库查询语言
- 批准号:
8909795 - 财政年份:1989
- 资助金额:
$ 160万 - 项目类别:
Continuing Grant
相似海外基金
6G Goal-Oriented AI-enabled Learning and Semantic Communication Networks (6G Goals)
6G目标导向的人工智能学习和语义通信网络(6G目标)
- 批准号:
10110118 - 财政年份:2024
- 资助金额:
$ 160万 - 项目类别:
EU-Funded
CAREER: Semantic and Goal-oriented Status Updating for Real-time Inference, Monitoring, and Decision-Making
职业:语义和目标导向的状态更新,用于实时推理、监控和决策
- 批准号:
2239677 - 财政年份:2023
- 资助金额:
$ 160万 - 项目类别:
Continuing Grant
NCS-FO: Brain-Informed Goal-Oriented and Bidirectional Deep Emotion Inference
NCS-FO:大脑知情的目标导向双向深度情感推理
- 批准号:
2318984 - 财政年份:2023
- 资助金额:
$ 160万 - 项目类别:
Standard Grant
Effects of language background and belief on goal-oriented reading: An empirical study
语言背景和信念对目标导向阅读的影响:一项实证研究
- 批准号:
23K00683 - 财政年份:2023
- 资助金额:
$ 160万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Assessing a Structured, Goal-Oriented, Animal-Assisted Therapy Program among Youth with Socioemotional Problems: A Pilot Study of Feasibility, Acceptability, and Initial Efficacy
评估有社会情感问题的青少年的结构化、目标导向、动物辅助治疗计划:可行性、可接受性和初步疗效的试点研究
- 批准号:
10533210 - 财政年份:2022
- 资助金额:
$ 160万 - 项目类别:
CAREER: Goal-Oriented Variable Transformations for Efficient Reduced-Order and Data-Driven Modeling
职业:面向目标的变量转换,用于高效的降阶和数据驱动建模
- 批准号:
2144023 - 财政年份:2022
- 资助金额:
$ 160万 - 项目类别:
Continuing Grant
Assessing a Structured, Goal-Oriented, Animal-Assisted Therapy Program among Youth with Socioemotional Problems: A Pilot Study of Feasibility, Acceptability, and Initial Efficacy
评估有社会情感问题的青少年的结构化、目标导向、动物辅助治疗计划:可行性、可接受性和初步疗效的试点研究
- 批准号:
10705738 - 财政年份:2022
- 资助金额:
$ 160万 - 项目类别:
A Low-stress, Goal-oriented Dialogue System
低压力、目标导向的对话系统
- 批准号:
21J13789 - 财政年份:2021
- 资助金额:
$ 160万 - 项目类别:
Grant-in-Aid for JSPS Fellows
NSF-BSF: Investigation of multi-scale turbulence coupling by goal-oriented adaptive surface modulation
NSF-BSF:通过目标导向的自适应表面调制研究多尺度湍流耦合
- 批准号:
2103536 - 财政年份:2021
- 资助金额:
$ 160万 - 项目类别:
Standard Grant
Development of and verification a goal-oriented ryouiku program for infants with developmental disabilities
针对发育障碍婴儿的目标导向的良育计划的开发和验证
- 批准号:
20K02710 - 财政年份:2020
- 资助金额:
$ 160万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




