Collaborative Research: Adaptive response of microbial communities and Fe biomineralization pathways to anaerobic redox cycling of Fe and N in sediments

合作研究:微生物群落和铁生物矿化途径对沉积物中铁和氮的厌氧氧化还原循环的适应性响应

基本信息

  • 批准号:
    0525069
  • 负责人:
  • 金额:
    $ 24.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-15 至 2009-02-28
  • 项目状态:
    已结题

项目摘要

EAR-0525510/EAR-0525069Collaborative Research: Adaptive response of microbial communities and Fe biomineralization pathways to anaerobic redox cycling of Fe and N in sedimentsThis project will explore mechanisms of microbially-catalyzed iron (Fe) redox cycling in anaerobic sediments. Iron is the fourth most abundant element in the Earth's crust, and its redox cycling exerts a strong influence on the behavior of various organic and inorganic compounds in both aquatic and terrestrial ecosystems. The structure and function of microbial communities associated with Fe redox cycling in near-surface environments is therefore an important topic in environmental microbiology and biogeochemistry. This project addresses several unique aspects of microbial community structure and physiology related to Fe redox cycling and biomineralization in modern subsoils and shallow groundwater environments. Such environments are primary receptors of both natural and anthropogenic materials (e.g. run-off from urban and agricultural systems), and microorganisms play a key role in subsurface biogeochemical processes.The proposed research will explore novel strategies that microbial populations and communities may utilize to derive energy from Fe redox cycling, and will examine the mineralogical signatures of such activities. Experimental reactive transport systems will be used to mimic natural subsurface environments in which temporal variations in the input of electron donors and acceptors are expected to strongly influence microbial community development and patterns of Fe biomineralization. The experimental systems will support microbial communities from either a freshwater wetland surface sediment or shallow Atlantic Coastal plain aquifer sediment. We hypothesize that the energy available from Fe and nitrogen redox interactions will lead to the development of microbial populations and/or communities specifically adapted to take advantage of the energy available during redox oscillations. In addition, we anticipate that the Fe mineralogy of sediments subject to redox fluctuations will evolve toward a suite of metastable minerals of relative low crystallinity and high reactivity relative to those in sediments under stable redox conditions. The reactor systems to be developed in this study represent novel research techniques for examining linkages between microbial physiology, community structure, biogeochemical reaction dynamics, and Fe biomineralization. The geomicrobiological and biogeochemical information gained from these model systems will be incorporated into a microbial energetics-based numerical simulation framework that will allow the results of our experimental studies to be transferred to a variety of surface and subsurface sedimentary environments.The project will train two Ph.D. students in multidisciplinary biogeochemical research methodologies as well as techniques for numerical simulation of biogeochemical processes and microbial population dynamics in sediments. An undergraduate intern will participate in microbial culturing and isolation at IU. The UW Ph.D. student will participate in the training of a summer Research Experience for Teachers (RET) fellow. The RET fellow will conduct original research, and travel to scientific meetings to present his or her research during the last two years of the project. The UW Ph.D. student will also participate in the NSF-sponsored Center for Integration of Research, Training, and Learning (CIRTL) program at UW, which offers courses and coordinates internship programs that provide practical experience in bringing science to the broader community. In addition to these activities, IU will undertake a novel collaboration with the Fulbright Academy of Science and Technology (FAST) aimed at increasing public understanding about the importance of environmental microbiology. We will work with FAST to develop presentation modules that will be offered by FAST members at selected locations around the U.S. The general presentations will cover topics of current interest to the public such as the role of bacteria in the metabolism of greenhouse gases, degradation of pollutants, and nutrient cycling (specifically N and Fe) in soils and sediments.
合作研究:微生物群落和铁生物矿化途径对沉积物中铁和氮厌氧氧化还原循环的适应性响应本项目将探索厌氧沉积物中微生物催化铁氧化还原循环的机制。 铁是地壳中第四丰富的元素,其氧化还原循环对水生和陆地生态系统中各种有机和无机化合物的行为产生强烈影响。 因此,近地表环境中与铁氧化还原循环相关的微生物群落的结构和功能是环境微生物学和生态地球化学的重要课题。 该项目涉及现代底土和浅层地下水环境中与铁氧化还原循环和生物矿化相关的微生物群落结构和生理学的几个独特方面。 这些环境是自然和人为物质(例如城市和农业系统的径流)的主要受体,微生物在地下生物地球化学过程中发挥着关键作用。拟议的研究将探索微生物种群和群落可能利用的新策略,以从Fe氧化还原循环中获得能量,并将研究此类活动的矿物学特征。 实验反应运输系统将被用来模拟自然地下环境中的电子供体和受体的输入的时间变化,预计将强烈影响微生物群落的发展和模式的铁生物矿化。 实验系统将支持来自淡水湿地表面沉积物或浅大西洋沿岸平原含水层沉积物的微生物群落。 我们假设,从铁和氮氧化还原相互作用的能量将导致微生物种群和/或社区的发展,特别是适应利用氧化还原振荡过程中可用的能量。 此外,我们预计,铁矿物学的沉积物受氧化还原波动将演变成一套亚稳矿物相对较低的结晶度和高反应性相对于那些在稳定的氧化还原条件下的沉积物。 在这项研究中开发的反应器系统代表了新的研究技术,用于研究微生物生理学,群落结构,生物地球化学反应动力学和Fe生物矿化之间的联系。 从这些模型系统中获得的地球微生物学和地球化学信息将被纳入一个基于微生物能量学的数值模拟框架,这将使我们的实验研究结果能够转移到各种地表和地下沉积环境中。学生在多学科生物地球化学的研究方法,以及在沉积物中的生物地球化学过程和微生物种群动力学的数值模拟技术。 一名本科实习生将在IU参与微生物培养和分离。 UW博士学生将参加夏季教师研究经验(RET)研究员的培训。 在项目的最后两年,基金会研究员将进行原创性研究,并前往科学会议介绍他或她的研究。 UW博士学生还将参加NSF赞助的研究,培训和学习(CIRTL)计划的整合中心,该中心提供课程并协调实习计划,为更广泛的社区提供科学实践经验。 除了这些活动外,IU还将与富布赖特科学技术学院(FAST)开展新的合作,旨在提高公众对环境微生物学重要性的认识。 我们将与FAST合作开发演示模块,这些模块将由FAST成员在美国各地的选定地点提供。一般演示将涵盖公众当前感兴趣的主题,如细菌在温室气体代谢中的作用、污染物降解以及土壤和沉积物中的营养循环(特别是N和Fe)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Flynn Picardal其他文献

Flynn Picardal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Flynn Picardal', 18)}}的其他基金

SusChEM: Collaborative Research: Biogenic Methanogenesis and Biodegradation of Organic Matter in Coals
SusChEM:合作研究:煤中有机物的生物产甲烷和生物降解
  • 批准号:
    1349072
  • 财政年份:
    2014
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Standard Grant
Biodegradation and Biologically Mediated Transformation of Polychlorinated Biphenyls
多氯联苯的生物降解和生物介导转化
  • 批准号:
    9528939
  • 财政年份:
    1996
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Standard Grant
Long and Medium-Term Research: Factors Affecting the Adaptation Period Preceding Aerobic Degradation of Chlorinated Benzenes
中长期研究:影响氯化苯好氧降解前适应期的因素
  • 批准号:
    9202389
  • 财政年份:
    1992
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316612
  • 财政年份:
    2024
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316615
  • 财政年份:
    2024
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316614
  • 财政年份:
    2024
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335800
  • 财政年份:
    2024
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316613
  • 财政年份:
    2024
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324936
  • 财政年份:
    2024
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324937
  • 财政年份:
    2024
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了